Roaming Molecules A Review of a Novel Reaction Mechanism

Vale Cofer-Shabica

Stratt-Weber Group Meeting

November 3, 2015

メロト メ御り メミト メミト

活

 $2Q$

Outline

- **•** [Formaldehyde](#page-3-0)
- **[Other Systems](#page-7-0)**

[Theories for Explanation](#page-14-0)

- [A phase space state-counting theory of roaming](#page-15-0)
- [A Variable Reaction Coordinate Transition State Theory Approach](#page-30-0)

 QQ

The South Tel

[Experimental Observations](#page-2-0)

重

 2990

イロト イ部 トイヨ トイヨト

[Formaldehyde](#page-3-0)

重

 2990

イロト イ部 トイミト イミト

Experimental Setup

- Photolysis laser: 330 nm (30340 cm $^{-1})$
- \bullet H₂CO in collision-less molecular beam
- Excites and dissociates within a few picoseconds
- DC slice imaging to probe CO rotational state

 \sim -4 F

An Unexpected Distribution

More energy yields an asymmetric, colder distribution?

Energy Scales

4 0 8

4 伺 ▶

 299

э

重

 2990

イロト イ部 トイヨ トイヨト

• $CH₃CHO:$ a roaming methyl group

 \equiv

 2990

- • $CH₃CHO:$ a roaming methyl group
- $NO₃$: roams on both $D₀$ and $D₁$ surface. Nearly all of the reactive flux is *via* roaming.

œ

 QQQ

イロト イ押ト イヨト イヨト

- • $CH₃CHO:$ a roaming methyl group
- $NO₃$: roams on both $D₀$ and $D₁$ surface. Nearly all of the reactive flux is via roaming.
- Many others, $20+$ at last count (see Bowman [2014])

æ

 QQ

イロト イ押ト イヨト イヨト

A few tell-tale signs:

multi-modal product state distributions

э

 $2Q$

 $A \equiv A \cup A \equiv A$

K ロ ▶ K 何 ▶

A few tell-tale signs:

- multi-modal product state distributions
- Systems where a radical dissociation threshold is nearly isoenergetic to a transition state to molecular products

 QQ

э

化重新化重新

4 D F

A few tell-tale signs:

- multi-modal product state distributions
- Systems where a radical dissociation threshold is nearly isoenergetic to a transition state to molecular products
- All systems which include a radical-radical abstraction reaction (most alkanes)

 QQ

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

[Theories for Explanation](#page-14-0)

重

 2990

イロト イ部 トイモト イモト

A phase space state-counting theory of roaming

э

 ORO

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

← ロ ▶ → 何 ▶

A two-parameter theory to predict the branching fraction between roaming and barrierless bond fission; see Andrews et al. [2013].

 QQ

э

イロト イ押ト イヨト イヨト

A two-parameter theory to predict the branching fraction between roaming and barrierless bond fission; see Andrews et al. [2013].

Assumes that the direct dissociation and the roaming paths to molecular products are dynamically independent. Therefore the rate constants may be computed independently.

 QQ

イロト イ押ト イミト イミト

A two-parameter theory to predict the branching fraction between roaming and barrierless bond fission; see Andrews et al. [2013].

Assumes that the direct dissociation and the roaming paths to molecular products are dynamically independent. Therefore the rate constants may be computed independently.

On the other hand, posits that radical dissociation and the roaming pathway are linked and therefore the rates must be calculated together. This is their point of attack.

KEL KALA KELKEL KAN KELA

Partitions the results of a phase-space volume summation based on the energy available to roam or dissociate. The phase space theory (Chesnavich and Bowers [1977]) treats the fragments as non-interacting in the roaming region.

э Ω

イロト イ母 ト イヨ ト イヨ ト

Requires 2 parameters:

- \bullet ΔE_{roam} , the energy difference between bond dissociation threshold and roaming threshold
- \bullet P_{roam} , the probability that states that may roam do rather than recombine to form reactants.

Use a phase space state count, w , for fixed total energy, E and total angular momentum, J. Classically, with n degrees of freedom, w of the form:

$$
w \propto \frac{1}{h^n} \int_{E,J} d\vec{p} \, d\vec{q} \tag{1}
$$

Roaming fragments are independent from each other so their contributions can be computed from their individual spectroscopic constants.

 Ω

イロト イ押ト イミト イミト

Can partition energy into fragment, relative translational, E_{trans} , and internal energy. Roaming states have:

 $E_{\text{trans}} < \Delta E_{\text{comm}}$

Dissociative states have:

 $E_{\text{trans}} > \Delta E_{\text{roam}}$

Estimate an upper bound for the branching ratio for roaming compared to dissociative products, $f_{\rm roam}^{\rm U.B.}$, as the ratio of state counts as a function of energy, E:

$$
f_{\text{room}}^{\text{U.B.}}(E) = \frac{w_{\text{room}}(E)}{w_{\text{room}}(E) + w_{\text{diss}}(E)}
$$
(2)

 $f_{\mathrm{roam}}^{\mathrm{U.B.}}(E)$ is almost certainly an upper bound because

- \bullet A free rotor estimate of w_{roam} will over-count the available states
- Some roaming states may not lead to molecular products—they may re-combine to reactants

The impact of these effects are combined in P_{roam} . The revised estimate is $f_{\text{roam}} = P_{\text{roam}} \cdot f_{\text{roam}}^{\text{U.B...}}$

$$
f_{\text{roam}}(E) = P_{\text{roam}} \frac{w_{\text{roam}}(E)}{w_{\text{roam}}(E) + w_{\text{diss}}(E)}
$$
(3)

KOD KOD KED KED E VOOR

Dissociation pathways for H_2CO :

 Ω G.

If $F(E)$ is the overall branching fraction for each of these pathways as a function of energy,

$$
f_{\text{roam}}(E) = \frac{F_{\text{roam}}(E)}{F_{\text{roam}}(E) + F_{\text{rad}}(E)}\tag{9}
$$

Use the midpoint of experimental values for $\Delta E_{\rm roam} = 146\mathrm{cm}^{-1}$ and set $P_{\text{room}} = 1$.

KOD KOD KED KED E VOOR

V. Cofer-Shabica (Brown U.) [Roaming Review](#page-0-0) November 3, 2015 22 / 38

 2990

×

э

 299

Jordan and Kable: Conclusions

- In 3 systems, found reasonable agreement when taking P_{roam} to be an adjustable parameter: H_2CO , $P_{\text{roam}} = 0.99$; NO_3 , $P_{\text{roam}} = 0.0075$; CH₃CHO, $P_{\text{room}} = 0.21$
- There are few experiments available for direct comparison.
- While the fitted model does give roaming fractions in reasonable agreement with experiment, it provides no way to construct P_{roam} or ΔE_{roam} from the properties of the energy landscape. Also, gives no information about products formed via conventional pathway.

A Variable Reaction Coordinate Transition State Theory Approach

Klippenstein et al. [2011]:

Assuming that the roaming and direct dissociation pathways are dynamically separated

Klippenstein et al. [2011]:

- Assuming that the roaming and direct dissociation pathways are dynamically separated
- Describes a transition state theory for computing branching ratio between radical dissociation and roaming.

Assumes decomposition can be broken into a sequence of steps:

1 Partial decomposition into two weakly interacting fragments

Assumes decomposition can be broken into a sequence of steps:

- **1** Partial decomposition into two weakly interacting fragments
- 2 A statistical competition between dissociation, isomerization, and return to reactants

Assumes decomposition can be broken into a sequence of steps:

- **1** Partial decomposition into two weakly interacting fragments
- 2 A statistical competition between dissociation, isomerization, and return to reactants

Assumes decomposition can be broken into a sequence of steps:

- **1** Partial decomposition into two weakly interacting fragments
- ² A statistical competition between dissociation, isomerization, and return to reactants

Steady-state kinetics using transition state fluxes for each process then give the relative branching ratios.

 QQ

イロト イ押ト イヨト イヨト

Regions of the energy surface:

- reactant
- products, radical
- products, molecular
- intermediate
- \vert H \cdots HCO intermediate

Blue contours are attractive, red are repulsive. Dashed lines represent dividing surfaces.

Klippenstein and Harding: Steady State Kinetics

$$
d[A]/dt = k_{1,A}[1] - k_{A,1}[A]
$$

\n
$$
d[1]/dt = k_{A,1}[A] + k_{2,1}[2] - (k_{1,A} + k_{1,2} + k_{1,P_1})[1]
$$

\n
$$
d[2]/dt = k_{1,2}[1] - (k_{2,1} + k_{2,P_1} + k_{2,P_2})[2]
$$

\n
$$
d[P_1]/dt = k_{1,P_1}[1] + k_{2,P_1}[2]
$$

\n
$$
d[P_2]/dt = k_{2,P_2}[2]
$$

Where ki*,*^j is the rate coefficient for i− *>* j.

э Ω

イロト イ押 トイヨ トイヨ トー

Klippenstein and Harding: Steady State Kinetics

Assuming steady state for the two intermediates, 1 and 2, yields the following branching ratio between roaming, P_2 , and simple dissociation, P_1 :

$$
\frac{k_{P_2}}{k_{P_1}} = k_{2,P_2} / \left[k_{2,P_1} \left(1 + \frac{k_{1,P_1}}{k_{1,2}} \right) + k_{1,P_1} \left(\frac{k_{2,1} + k_{2,P_2}}{k_{1,2}} \right) \right]
$$
(10)

э Ω

イロト イ押ト イヨト イヨトー

Klippenstein and Harding: Steady State Kinetics

The rate coefficients may also be expressed in terms of reactive fluxes, $N_{i,j}=k_{i,j}(h\rho_i)$, where ρ_i is the density of states for species i . The $\{N_{i,j}\}$ will be evaluated according to transition state theory as the number of reactive trajectories crossing the dividing surfaces shown earlier.

$$
\frac{k_{P_2}}{k_{P_1}} = N_{2,P_2} / \left[N_{2,P_1} \left(1 + \frac{N_{1,P_1}}{N_{1,2}} \right) + N_{1,P_1} \left(1 + \frac{N_{2,P_2}}{N_{1,2}} \right) \right]
$$
(11)

Note that as a consequence of microscopic reversibility, $\mathcal{N}_{i,j} = \mathcal{N}_{j,i}$.

 Ω

イロト イ何 トイヨト イヨト ニヨー

Klippenstein and Harding: And they're off to the races

- To evaluate the fluxes, the authors must treat both spherical and planar dividing surfaces.
- They do this by using variable reaction coordinate transition state theory, a sum of states in configuration space.

Blue contours are attractive, red are repulsive. Dashed lines represent dividing surfaces.

つひひ

Klippenstein and Harding: H_2CO

V. Cofer-Shabica (Brown U.) [Roaming Review](#page-0-0) November 3, 2015 33 / 38

 2990

Klippenstein and Harding: Conclusions

Compares quite favorably to reduced dimension trajectories at energies of less than 1 kcal/mol above the radical asymptote.

Klippenstein and Harding: Conclusions

Compares quite favorably to reduced dimension trajectories at energies of less than 1 kcal/mol above the radical asymptote.

Does systematically less well at higher energies or when radical and roaming fluxes are approximately equal.

 Ω

イロト イ押ト イミト イミト

[Questions](#page-45-0)

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ○ 君 │ ◆ 9 Q ⊙

Questions?

重

 $2QQ$

Some of our results

 \leftarrow

Ξ

 299

э

[References](#page-48-0)

- Duncan U. Andrews, Scott H. Kable, and Meredith J. T. Jordan. A phase space theory for roaming reactions. J. Phys. Chem. A, 117(32):7631–7642, 2013. doi[:10.1021/jp405582z.](http://dx.doi.org/10.1021/jp405582z)
- Joel M. Bowman. Roaming. Mol. Phys., 112(19):2516–2528, 2014. doi[:10.1080/00268976.2014.897395.](http://dx.doi.org/10.1080/00268976.2014.897395)
- Walter J. Chesnavich and Michael T. Bowers. Statistical phase space theory of polyatomic systems: Rigorous energy and angular momentum conservation in reactions involving symmetric polyatomic species. J. Chem. Phys., 66(6):2306–2315, 1977.
- Stephen J. Klippenstein, Yuri Georgievskii, and Lawrence B. Harding. Statistical theory for the kinetics and dynamics of roaming reactions. J. Phys. Chem. A, 115(50):14370–14381, 2011. doi[:10.1021/jp208347j.](http://dx.doi.org/10.1021/jp208347j)

 QQ

イロト イ押ト イヨト イヨト