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0.1 Method

A new method of finding geodesics for soft particle liquids is given in this section.

It follows the basic idea of the original method [1] based on Kuhn-Tucker theorem,

that the path consists of segments of unconstrained steps (V (R) < EL) and segments

of steps obeying the equality (V (R) = EL). Similar to the situation in the original

method, the system always heads towards the end point until it hits an obstacle in

the configuration space. The difference is how to form steps around the obstacles.

Given a pair of end points Ri and Rf , the landscape energy EL is the bigger value

of V (Ri) and V (Rf ), EL = max(V (Ri), V (Rf )). The system has a configuration

R = (r1, · · · , rj, · · · , rN) and a potential energy V = V (R).

The path consists of direct steps and contour steps.

1. Direct Step

In direct step, the system always tries to go directly from its current position

R(t) to the second end point Rf , with a small step size δdi. This part is the

same as in the original method in Chapter 3. Direct steps form the segments

of free propagation of a path based on Kuhn-Tucker theorem.

R0(t+ 1) = R(t) + δdi
Rf −R(t)

|Rf −R(t)|
(1)

In calculation δdi = 0.001σ is used.

If the trial position R0(t+1) is in the allowed region of configuration space(V (R0(t+
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1)) ≤ EL), this R0(t + 1) is accepted as the new configuration of the system

along the path. The system will proceed from there.

2. Contour Step

If the trial position is in a forbidden region of configuration space(V (R0(t+1)) >

EL), the system first retreats to its position R(t) before the failed direct step.

The system then takes a contour step. (Similar to the case of hard sphere

method in Chapter 3, the hard sphere system first retreats to its last allowed

position before the failed direct step, then takes a collision avoidance step.)

Denote the 3N dimensional gradient vector of potential energy function V (R)

as ∇V (R).

The level set Φ of potential energy function V at an arbitrary configuration

R(t) is

Φ(R(t)) = {R : V (R) = V (R(t))} (2)

The gradient of V at R(t) is perpendicular to the level set of V at R(t).

∇V (R(t)) ⊥ Φ(R(t)) (3)

Denote the unit vector pointing from the current position of the system R(t)

to the second end point Rf as d̂.

d̂ =
Rf −R(t)

|Rf −R(t)|
(4)

d̂ can be decomposed to two perpendicular vectors f and g, with f perpendicular

to ∇V and g parallel to ∇V . g is the projection of d̂ along the direction of
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∇V , and f is d̂− g.

d̂ = f + g (5)

g =
d̂ · ∇V
|∇V |

∇V
|∇V |

(6)

f = d̂− g (7)

g ‖ ∇V, g ⊥ Φ(R(t)) (8)

f ⊥ ∇V, f ‖ Φ(R(t)) (9)

f ⊥ g (10)

Since f ⊥ ∇V , if the system moves along the direction f , the move does not

increase the potential energy V . We can move the system according to

R0(t+ 1) = R(t) + δdif̂ (11)

f̂ =
f

|f |
(12)

δdi = 0.001σ (13)

Contour steps form the segments of a path that satisfy the constraints as equal-

ity based on Kuhn-Tucker theorem.

Equation 11 does not increase the potential energy of the system in principle.

Due to numerical precision in calculation, in some cases the move may need a
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small component in the direction of −g to decrease the potential energy a little

bit. An iteration is used to deal with this situation.

Rn(t+ 1) = R(t) + δdif̂ − δnc
∇V
|∇V |

(14)

δnc = 10−5nσ (15)

where n = 0, 1, 2, · · · , nmax is the index of iteration. The iteration stops when

V (Rn(t+1)) ≤ EL. In most cases, no iteration is needed and nmax = 0. In some

cases two or three iterations are needed. (In the original method in Chapter

3 a tolerance δV is used to deal with numerical error, which serves the same

purpose.) The configuration Rnmax(t+ 1) is accepted as the new configuration

of the system along the path. The system proceeds from there.

3. A path is found when the distance between the current configuration of the

system R(t) and the second end point Rf is smaller than δdi.

|Rf −R(t)| < δdi (16)

The path length l is the sum of the lengths of every successful step (steps

connecting two consecutive allowed configurations) along the path.

l =
t=P∑
t=0

|R(t+ 1)−R(t)| (17)

where P is the total number of steps along the path, R(0) = Ri , R(P+1) = Rf .

This method is shown in Algorithm 1.
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Algorithm 1 New method of path finding for soft particle systems

EL ←MAX(V (Ri), V (Rf ))
l← 0 . path length
Rt . current configuration of the system
Ro . previous allowed configuration of the system
Rt ← Ri , Ro ← Ri

while |Rf −Rt| > δdi do . δdi = 0.001σ
Ro ← Rt

Rt ← Rt + δdi
Rf −Rt

|Rf −Rt|
. direct step

if V (Rt) > EL then
Rt ← ContourStep(Ro) . contour step
end if

l← l + |Rt −Ro|
end while
return l

procedure ContourStep(Ro)
R
δc ← 0
d̂← Rf−Ro

|Rf−Ro|

∇̂V ← ∇V
|∇V |

repeat

R← Ro + δdi
d̂− (d̂ · ∇̂V )∇̂V
|d̂− (d̂ · ∇̂V )∇̂V |

− δc∇̂V . δdi = 0.001σ

δc ← δc + 10−5σ

until V (R) ≤ EL

return R
end procedure

0.2 Results

The procedure of setting up molecular dynamics and finding pairs of end points is

the same as in Chapter 3.

0.2.1 Parameter Testing

The step size δdi = 0.001σ is used throughout the calculations with the new method.

Fig. 1 shows the convergence of (∆R
g

)2 with respect to the parameter δdi.
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Figure 1: Parameter test of δdi of the new path finding method. The system is Kob-
Andersen liquid of size N = 108. The reduced temperature kBT/ε decreases from 5.0
to 1.0. The results are averaged over 5 unoptimized paths of ∆R = 108σ.

Fig. 1 shows that the path lengths generated with the three different tested values

of the parameter δdi are numerically very close. Computationally the time t needed

to find a path is t(δdi = 0.01σ) < t(δdi = 0.001σ) < t(δdi = 0.0001σ). Because in the

original method δdi = 0.001σ is used as the direct step length, here δdi = 0.001σ is

chosen.

0.2.2 Convergence of the Paths

Fig. 2 shows the convergence of (∆R
g

)2 with respect to ∆R with the new path finding

method. Fig. 3 shows the convergence of (∆R
g

)2 with respect to ∆R with the original

path finding method. Comparing the graphs, the new method has similar convergence
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rates to the original method with respect to ∆R.
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Figure 2: Convergence of (∆R
g

)2 with respect to ∆R with the new path finding method.

The system is Kob-Andersen liquid of size N = 108. The reduced temperature kBT/ε
decreases from 5.0 to 1.0. The results are averaged over 5 unoptimized paths. The
figure shows that (∆R

g
)2 is converged with ∆R within fluctuation.

Fig. 4 shows the convergence of (∆R
g

)2 with respect to N with the new path finding

method. Fig. 5 shows the convergence of (∆R
g

)2 with respect to N with the original

path finding method. Comparing the graphs, the new method has similar convergence

rates to the original method with respect to N .
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Figure 3: Convergence of (∆R
g

)2 with respect to ∆R with the original path finding
method. The system is Kob-Andersen liquid of size N = 108. The reduced temper-
ature kBT/ε decreases from 5.0 to 1.0. The results are averaged over 5 unoptimized
paths. The figure shows that (∆R

g
)2 is converged with ∆R within fluctuation.
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Figure 4: Convergence of (∆R
g

)2 with respect to N with the new path finding method.
The system is Kob-Andersen liquid of sizes N = 108 and N = 256. The reduced tem-
perature kBT/ε decreases from 5.0 to 1.0. The results are averaged over 5 unoptimized
paths. The figure shows that (∆R

g
)2 is converged with N within fluctuation.
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Figure 5: Convergence of (∆R
g

)2 with respect to N with the original path finding
method. The system is Kob-Andersen liquid of sizes N = 108 and N = 256. The
reduced temperature kBT/ε decreases from 5.0 to 1.0. The results are averaged
over 5 unoptimized paths. The figure shows that (∆R

g
)2 is converged with N within

fluctuation.
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0.2.3 (
∆R

g
)2

Fig. 6 shows the comparison of (
∆R

g
)2 with the new method and with the original

method.
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Figure 6: Comparison of (∆R
g

)2 with the new method and with the original method.
The system is Kob-Andersen liquid of size N = 108. The reduced temperature
kBT/ε decreases from 5.0 to 1.0. The results of both methods are averaged over 5
unoptimized paths of ∆R = 108σ. The figure shows that the two methods give close
numerical results for (∆R

g
)2.

0.2.4 Participating Ratio

Fig. 7 shows the convergence of participation ratio n/N with respect to N with the

new path finding method.
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Figure 7: Convergence of the participation ratio n/N with respect to N with the new
path finding method for the Kob-Andersen liquid. The reduced temperature kBT/ε
decreases from 5.0 to 1.0. The results are averaged over 5 unoptimized paths. The
figure shows that n/N is converged with N within fluctuation. The motions along
the paths are therefore macroscopic.

Fig. 8 shows the comparison of participation ratio
n

N
with the new method and

with the original method.
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Figure 8: Comparison of participation ratio n/N with the new method and with the
original method for the Kob-Andersen liquid. The reduced temperature kBT/ε de-
creases from 5.0 to 1.0. The results of both methods are averaged over 5 unoptimized
paths of N = 108 and ∆R = 108σ. The figure shows that the two methods give close

numerical results of
n

N
.

0.3 Comparison of Methods

All the above figures show that the new method is able to generate converged paths,

and the results are numerically very close to those of the original method. The two

methods are both based on Kuhn-Tucker theorem, with the difference in implementing

the segments of paths that obey the constraints as equality. The contour step in the

new method, as the counterpart of the escape step in the original method, allows

the system to move along the boundary too. The system does retreat to the allowed

configuration first before the contour step, and that configuration does not usually lie
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exactly on the boundary. But as long as the step length is small, the configuration is

still very close to the boundary, so is the contour step.

In the escape step in the original method, iteration is needed in the gradient

descend method to find the nearest allowed configuration from the disallowed trial

location. In the new method, no such iteration is needed. This saves computational

time because it does not have to compute the potential energy multiple times for one

step. We compare the computational performance of the two methods in Table 1. The

time listed in the table is the rough average amount of time needed for a method to

find a path, given a pair of end points, averaged over 5 unoptimized paths of N = 108

and ∆R = 108σ for Kob-Andersen liquid. The table shows that the efficiency of the

new method is about 10 times higher than the original method.

kBT/ε time(seconds) - new method time(seconds) - original method
5.0 750 12000
4.0 800 12000
3.0 850 12000
2.0 900 13000
1.0 1100 15000

Table 1: Comparison of computational performance of the new method and the orig-
inal method. The table lists the time needed to find a path for both methods. Both
results are averaged from 5 unoptimized paths of N = 108 and ∆R = 108σ for
Kob-Andersen liquid. The new method consumes about one tenth of the time of the
original method to find a path.

Another advantage of the new method is that, if the nearest allowed configuration

R where the escape step in the original method takes the system to happens to have

the property that d̂ is perpendicular to ∇V (R), the next direct step would take the

system back to the forbidden region, then the following escape step would take the

system back to the same nearest allowed point R again. The program would stay in

an infinite loop. The new method, on the other hand, does not have this problem.
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