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Abstract

A derivation and discussion of Wang and Stratt’s [1] path-integral expression for the diffu-
sion propagator. We follow Weigel [2] and note some of the implications of the expression.

Introduction
We wish to understand the following equation (2.1) from Wang and Stratt’s second paper of
2007 [1]:

G(R0 → R, t) =

∫ R,t

R0,0
D [R(τ)] exp

[
− 1

4D

∫ t

0

(
dR

dτ

)2

dτ

]
, (1)

which gives the Green’s function for a system under free diffusion (no forces) as a path integral.
From this point, the authors argue that the dynamics of chemical systems are well captured by
the paths which are “shortest”. This observation has motivated much of the group’s work
during and since 2007.

This document contains two parts: a derivation of the above expression and a discussion
which motivates it as well as leads from it to the notion of shortest paths as dominant.

Derivation
This section shamelessly follows the first chapter of Weigel’s excellent introduction to path
integrals [2]. In the absence of external forces, diffusion is a process characterized by the
following dynamical relation:

d

dt
G(R, t) = D∇2G(R, t) , (2)

where G(R, t) is the probability of finding a system in configuration R at time t and D is a
constant called the diffusion constant. We take up the question of why concern ourselves with
(free) diffusion in the next section.

With the initial condition G(R, t = 0) = δ(R − R0), one can find the solution for a
Cartesian system of α degrees of freedom to be:

G(R0 → R, t) = (4πDt)−α/2 exp

[
−(R−R0)

2

4Dt

]
, (3)
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as can be verified by substitution. Our notation is to indicate the probability of diffusing from
R0 to R in a time t.

Suppose we are interested in a particular path between R0 and R. We could represent such
a path by discretizing it into (N +1) bits of time, each of duration ε, such that: (N +1)ε = t.
We can then define the following: ti ≡ ε · i, and tN+1 ≡ t, and Ri as the configuration of the
system at time ti. This procedure is illustrated in figure 1.

Figure 1: Discretizing a Path
Figure modified from [2].

We can also compute the probability of tracing such a path. Because they are independent,
it is the probability of propagating from R0 to R1 in time ε multiplied by the probability of
propagating from R1 to R2 in time ε and so on. By inserting eq. 3 we have:

G(R→ R0, t; {R1,R2. . . .RN}) =
N∏
i=0

G(Ri → Ri+1, ε) (4)

= (4πDε)−α(N+1)/2 exp

[
−

N∑
i=0

(Ri+1 −Ri)
2

4Dε

]
, (5)

which gives the probability of diffusing from R0 to R in a time t via the N ordered points
{R1,R2. . . .RN}. We recover our original expression (eq. 3) by integrating eq. 4 over the
domain of each Ri:

G(R→ R0, t) =

∫
dR1

∫
dR2 . . .

∫
dRNG(R→ R0, t; {R1,R2. . . .RN}) (6)
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In the continuous limit, N →∞ and ε → 0; focusing for the moment on the exponential,
we have:

lim
ε→0
N→∞

exp

[
−

N∑
i=0

(Ri+1 −Ri)
2

4Dε

]
=

lim
ε→0
N→∞

exp

[
− 1

4D

N∑
i=0

(
Ri+1 −Ri

ε

)2

ε

]
=

exp

[
− 1

4D

∫ t

0

(
dR

dτ

)2

dτ

]
,

(7)

where R(τ) is a continuous function on [0, t]specifying the path. Now we can write:

G(R→ R0, t) =

lim
ε→0
N→∞

(4πDε)−α(N+1)/2

∫
dR1

∫
dR2 . . .

∫
dRN exp

[
− 1

4D

∫ t

0

(
dR

dτ

)2

dτ

]
(8)

To express this more compactly, we define the following operator:∫ R,t

R0,0
D [R(τ)] ≡ lim

ε→0
N→∞

(4πDε)−α(N+1)/2

∫
dR1

∫
dR2 . . .

∫
dRN , (9)

which explicitly specifies the boundary values: R0 at t = 0 and R at time t. With this notation
in hand, we arrive at our original equation:

G(R→ R0, t) =

∫ R,t

R0,0
D [R(τ)] exp

[
− 1

4D

∫ t

0

(
dR

dτ

)2

dτ

]
, (10)

which expresses the diffusion propagator as an integral over the space of all possible functions
connecting the boundary values.

Discussion

Why Diffusion?
Why do we concern ourselves with diffusion, and in particular, free diffusion? Why do we
preform all of this work when we already know the solution? In the case of liquids, we examine
diffusion because it is the mechanism of their molecular dynamics—the changes in structure
are diffusive. In small molecule systems, we rely on two observations. First, and somewhat
crassly, this method provides us with a rational filtering technique—a way to select the inherent
dynamics of a system under study. Second, while the notion of diffusion is not applicable to
the atomic motions of a small molecule, it is not unreasonable to consider the diffusion of
energy between different parts of the system.

Analysis in the absence of external forces allows us to treat complicated systems from
another perspective. We could solve the diffusion equation in the presence of a complicated
potential, but this is quite challenging and not particularly general. Treating free diffusion,
on the other hand, is easy, but there’s no such thing as a free lunch: we require our system to
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remain in field free regions during every infinitesimal step. Practically, this amounts to skirting
the boundaries of obstacles and not interacting with them directly.

It turns out that an algorithm to deal with complicated boundary conditions is not only
tractable, but far more general than a method to solve the diffusion equation in a broad class
of chemical systems. The algorithm described in [1] is an example, and the workhorse of the
group’s studies.

Why Shortest Paths?
In their paper [1], Wang and Stratt argue that eq. 10 implies that the trajectories which domi-
nate the path integral are those with the shortest length. However, the form of eq. 10 contains
no expression for the length. The key observation is the following: the extremization of any
quantity of the form:

I =

∫
f(x)dx (11)

can also be effected by extremizing

I ′ =

∫
H(f(x))dx (12)

where H(x) is a function with a strictly positive derivative and whose domain includes the
range of f(x). Thus, minimizing ∫ t

0

(
dR

dτ

)2

dτ (13)

can be achieved by minimizing ∫ t

0

√(
dR

dτ

)2

dτ . (14)

The integral in eq. 14 can be reduced to∫ t

0

√
dR · dR =

∫ t

0
‖dR‖ , (15)

which is clearly the length of the path.
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