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Free polymer motion: minimizing the action and respecting the constraints. Progress report.
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I. PROBLEM SETUP AND FORMULATION

We showed that the kinetic energy of polymer motion around its center of mass — its internal kinetic energy — is
given by

T =
1

2
md2Cij(

˙̂
Ωi •

˙̂
Ωj)(τ) (1)

where
˙̂
Ω are time derivatives of bond unit vectors indexed with from 1 to Nb, d is the fixed bond length, m is the

mass of one atom in a polymer, and C is a matrix defined as

Cij = Cji = CNb+1−i, Nb+1−j =
min(i, j)(Nb + 1)− ij

Nb + 1
(2)

Bond unit vectors can change their orientation with time τ , but are constrained to have a norm of unity:

σi(τ) =
∥∥∥Ω̂i(τ)

∥∥∥2 − 1 = 0 ∀ i ∈ (1, . . . , Nb) (3)

We also specify the boundary conditions on initial (τ = 0) and final (τ = t) orientations of all bond unit vectors.
Given these boundary conditions, we can solve the problem of free diffusion by minimizing the Lagrangian with
constraints:

S =

∫ τ=t

τ=0

T dτ

σi(τ) = 0

(4)

which is equivalent to solving the equations of motion with constraints (see appendix A)

Cij
¨̂
Ωj(τ) = − 2

md2
λi(τ)Ω̂i(τ)

σi(τ) = 0
(5)

where λi(τ) are time-dependent Lagrange multipliers.
Given this setup, one has to either minimize the action directly or solve the equations of motion. Either way,

one finds the time-dependent form of bond velocities
˙̂
Ω(τ), the solution to the problem of free polymer motion that

respects the constraints.
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II. SLERP

In the case when the cross terms in the kinetic energy expression vanish, equations of motion for each bond unit
vector become decoupled. Apart from the weights Cii, this motion is equivalent to the motion of Nb linear molecules.
In that case, the solutions Ω̂(τ) that minimize the Lagrangian are given by SLERP (since the bond vectors are now
decoupled, the weights cancel out in the equations of motion and we may omit them). Recall that the SLERP solution

is derived from the following parameterization of Ω̂(τ)1:

Ω̂(τ) = a(τ)Ω̂(0) + b(τ)Ω̂(t) + c(τ)n̂ (6)

Where n̂ = Ω̂(0)×Ω̂(t)

∥Ω̂(0)×Ω̂(t)∥ and the time-dependent coefficients a, b, and c respect the boundary conditions:

a(0) = 1, a(t) = 0, δa(0) = δa(t) = 0

b(0) = 0, b(t) = 1, δb(0) = δb(t) = 0

c(0) = 0, c(t) = 0, δc(0) = δc(t) = 0

(7)

and the normalizaton constraint:

a2(τ) + b2(τ) + 2a(τ)b(τ) cos∆ψ + c2(τ)− 1 = 0 (8)

where ∆ψ is the angle between Ω̂(0) and Ω̂(t).

Given these parameterizations, one substitutes Ω̂(a(τ), b(τ), c(τ)) into the Lagrangian L = 1
2md

2
∑

i

(
˙̂
Ωi •

˙̂
Ωi − λiσi(Ω̂i)

)
,

and proceeds to vary the action and obtain Euler-Lagrange equations of motion for a, b, and c. Omitting the time
dependence, they are1:

A = ä+ b̈ cos∆ψ + λ (a+ b cos∆ψ) = 0

B = b̈+ ä cos∆ψ + λ (b+ a cos∆ψ) = 0

C = c̈+ λc = 0

τ
√
λ = ∆ψ

(9)

for each bond vector. Solving these equations yields1

a(τ) =
sin
((
1− τ

t

)
∆ψ
)

sin(∆ψ)

b(τ) =
sin
(
τ
t

)
∆ψ

sin(∆ψ)

c(τ) = 0

(10)

One can see that the SLERP solution describes planar motion. For each bond, the plane is defined by the initial
and final orientation of the bond unit vector.

III. NEW PARAMETERIZATION

Consider the parameterization

Ω̂(τ) = cos (ϕ(τ)) (a(τ)Ω̂(0) + b(τ)Ω̂(t)) + sin (ϕ(τ)) n̂ (11)

where a(τ) and b(τ) are SLERP solutions from 10, and ϕ(τ) is such that

ϕ(0) = 0, ϕ(t) = 0, δϕ(0) = δϕ(t) = 0 (12)

so that the boundary conditions are respected.
The intuition behind this parameterization is that our solution should lie perturbabitvely close to the SLERP

solution:
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• In the absence of constraint forces, the bond vectors move in planes defined by their known initial and final
orientations;

• The constraint forces push the bond vectors out of the plane;

• In the limit of the dimininshing difference between the initial and final times, the solution should be getting
arbitrarily close to the SLERP solution.

The reason for choosing trigonometric functions is pragmatic: the normalization constraint is respected exactly
with the fundamental trig identity.

Further, we make an ansatz on the form of the time dependence of ϕ in the limit of the small time step. In this
limit (and this limit only), it makes sense that ϕ(τ) will have single peak value at t−0

2 that would be small in the

sense that ϕ( t2 ) ≪
π
2 . Trying to choose the simplest functional form, we take ϕ(τ) to exhibit a projectile motion with

some initial velocity and a constant downward acceleration. It is easy to show that in this case

ϕ(τ) = τv
(
1− τ

t

)
+O

(
τ3
)

(13)

Using the equations above, we can work out the form of the action and minimize it with respect to the initial
velocities vi of ϕi(τ) for each bond vector. This means that

δS

δvi
=

∫ τ=t

τ=0

(
1

2
md2Cij

(((
∂

∂v
˙̂
Ωi

)
•
˙̂
Ωj

)
(τ) +

(
˙̂
Ωi •

∂

∂v
˙̂
Ωj

)
(τ)

))
dτ (14)

is set to 0 for all i, and the set of initial “velocities” vi is determined from the resulting system of equations.

IV. CALCULATION

Let us write out Ω̂(τ, v) and
˙̂
Ω(τ, v):

Ω̂(τ, v) = cos (ϕ(τ, v)) Ω̂(0)(τ) + sin (ϕ(τ, v)) n̂

˙̂
Ω(τ, v) = cos (ϕ(τ, v))

˙
Ω̂(0)(τ)− ϕ̇ sin (ϕ(τ, v)) Ω̂(0)(τ) + ϕ̇ cos (ϕ(τ, v)) n̂

(15)

where the SLERP solution for the bond unit vector has been denoted Ω̂(0)(τ), and n̂ is still equal to Ω̂(0)(0)×Ω̂(0)(t)

∥Ω̂(0)(0)×Ω̂(0)(t)∥ .

Omitting the dependence on τ and v, ∂
˙̂
Ω
∂v is given by

∂
˙̂
Ω

∂v
= −

(
∂ϕ

∂v
sinϕ

)
˙

Ω̂(0)

−

(
∂ϕ̇

∂v
sinϕ+ ϕ̇

∂ϕ

∂v
cosϕ

)
Ω̂(0)

+

(
∂ϕ̇

∂v
cosϕ− ϕ̇

∂ϕ

∂v
sinϕ

)
n̂

(16)

The diagonal elements ∂
∂v

(
˙̂
Ωi •

˙̂
Ωi
)
(τ) are rather simple, because n̂i • Ω̂

(0)
i = 0 by definition, Ω̂

(0)
i

•
˙

Ω̂(0)
i = 0 by

normalization, and n̂i •
˙

Ω̂(0)
i = 0 since SLERP bond vectors exhibit planar motion.

Off-diagonal elements are gnarly because the above does not hold. However, if we assume that the time step is
small enough that we can replace these time-dependent dot products with their averages over a period, the above
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cross terms become constants easily integrable in time. Denote:

1

t

∫ τ=t

τ=0

(
˙

Ω̂(0)
i •

˙
Ω̂(0)

j

)
dτ = Aij

vv

1

t

∫ τ=t

τ=0

(
Ω̂

(0)
i

•
˙

Ω̂(0)
j

)
dτ = Aij

rv

1

t

∫ τ=t

τ=0

(
n̂i • Ω̂

(0)
j

)
dτ = Aij

nr

1

t

∫ τ=t

τ=0

(
n̂i •

˙
Ω̂(0)

j

)
dτ = Aij

nv

1

t

∫ τ=t

τ=0

(n̂i • n̂j) dτ = Aij
nn

(17)

Then the calculations can be carried through using a computer algebra system. The result (obtained with Mathe-
matica) is:

δS

δvi
= Cii

(
2

3
− t2

15

)
tvi +O

(
t5
)

+
∑
i ̸=j

Cij

(
t

3
Aij

nn (vi + vj)

− t2

30

((
Aji

nrv
2
i

)
+ 2vivjA

ij
nr + (i↔ j)

)
− t3

420

(
3Aij

nnvj
(
v2i − v2j

)
+ 4Aij

rrviv
2
j + 14Aij

vvt
2vi + (i↔ j)

))
+O

(
t5
)

(18)
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Appendices
A. LAGRANGIAN WITH CONSTRAINTS

Basic Lagrangian mechanics. Given a functional

S =

∫ τ=t

τ=0

L(q(τ), q̇(τ), τ) dτ

we wish to obtain the equations of motion q(τ). These functions q(τ) have to minimize our functional — the action
S.

mailto:artur_avkhadiev@brown.edu
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To do so, we use the calculus of variations. At a minimum, the variation of the action should be 0.

δS = δ

∫ τ=t

τ=0

L(q(τ), q̇(τ), τ) dτ

=

∫ τ=t

τ=0

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
dτ

=

∫ τ=t

τ=0

(
∂L

∂qi
δqi +

(
∂

∂τ

(
∂L

∂q̇i
δqi

)
− ∂

∂τ

(
∂L

∂q̇i

)
δqi

))
dτ

=

∫ τ=t

τ=0

(
∂L

∂qi
− ∂

∂τ

∂L

∂q̇i

)
δqi dτ

where we integrated by parts and the full term ∂
∂τ

(
∂L
∂q̇i
δqi

)
vanished at the boundaries: δq(τ = 0) = δq(τ = t) = 0.

Since the variation δqi is arbitrary and the integral is identically zero, we find Euler-Lagrange equations of motion for
each coordinate qi:

∂

∂τ

∂L

∂q̇i
=
∂L

∂qi

Now, in addition minimizing the functional, we may have have to respect a set of constraints σk((q)(τ)) = 0. Recall
from calculus that finding a minimum x0 of a function F (x) constrained to a set of surfaces Gk(x0) = 0 means that
the normal vector ∂F

∂xi
x̂i is a linear combination of normal vectors to constraint surfaces:

∂F

∂xi
x̂i = λk

∂Gk

∂xi
x̂i

where λk are scalar constants (Lagrange multipliers). Note that minimizing F (x) subject to constraints Gk(x0) = 0
is equivalent to minimizing F (x)− λkG

k(x) without constraints. Given the additional information that Gk(x0) = 0,
the number of unknowns is equal to the number of equations.
This is all we need to do calculus of variations with constraints: modify the Lagrangian to include the constraints:

L′(q(τ), q̇(τ), τ) = L− λk(τ)σ
k(q(τ), τ)

except that now we are minimizing a functional, and our minimum is not at a point but a function (of time), and
Lagrange multipliers are time-dependent. The Euler Lagrange equations for L′, in addition to a set of algebraic
equations σk(q(τ), τ) = 0, give us the equations of motion.
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