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Abstract

In this work, we explore the inherent dynamics of liquid crystal formers using
geodesic theory. We locate geodesics (shortest paths) through the potential energy
landscape ensembles of the isotropic liquid and nematic liquid crystal phases of
a liquid crystal forming system. One expects that the differences in properties
of these paths between the liquid and liquid crystal phases will yield insight into
how molecular motion differs between these phases. What is found is that, while
it yields results for the isotropic liquid phase which are consistent with previous
studies on linear (diatomic) molecules [1],[2], the current formulation of geodesic
theory for linear molecules does not correctly capture the inherent dynamics of
liquid crystals, and a modification of the current theory is necessary in order to
describe these dynamics.
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1 Introduction

Traditionally, all matter has been classified as being in one of three states: solid, liquid,
and gas. These classifications are based on the degree of order in a substance. The atoms
or molecules that make up (crystalline) solids are arranged in regular and rather fixed
patterns; those that make up fluids are arranged in more random fashions. However,
certain substances exhibit phases which do not fit neatly into this simple classification -
these are called mesophases. One interesting class of mesophases is liquid crystal phases.
These phases are characterised by having high orientational order, but (varying degrees
of) translational disorder. In this thesis, we will focus on the nematic liquid crystal
phase, in which molecules posess a high degree of orientational order but are completely
translationally disordered. For information on other liquid crystal phases, see [3].

It is interesting to consider how the motion of molecules in a normal liquid of linear
molecules differs from that in a liquid crystal. In the nematic liquid crystal phase, rota-
tional motion is much more restricted than it is in the liquid phase, as reflected by the
very different rotational diffusion constants of these phases (see Appendix A.) In order
to better understand molecular motion in liquid crystals, we analyze pathways through
the potential energy landscape of a liquid-crystal forming system. The theory of shortest
pathways (geodesics) through the potential energy landscapes of linear molecules has al-
ready been investigated [1],[2]. The conclusion of this study was that the shortest, most
efficient pathways - which represent the “inherent dynamics” of the liquid (the dynamics
that remain after filtering out thermal motion [1]) - are ones in which molecules execute
just enough rotation to translate along their long axes through narrow “channels” in the
liquid. However, one might expect that in the rotationally restricted liquid crystal phase,
there would be even less molecular rotation compared to translation than in a normal
liquid.
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In this thesis, we shall first some of the phenomenology of liquid crystals and the
model we use to simulate them. We will then discuss the potential energy landscape
ensemble and geodesic theory for linear molecules. Next, we review the geodesic path-
finding algorithm for linear molecules. Finally, we present our findings about geodesics
through liquid crystal potential energy landscapes. In the appendices we include detailed
results of a molecular dynamics simulation of our liquid crystal model, an analysis of the
efficiency of part of our path-finding algorithm, and several key derivations.

1.1 Reduced Units

I have defined the quantities in this simulation in terms of the following units: σ0, which
defines the length scale; ε0 which defines the energy scale; m, the mass of each of the
molecules; and I, the moment of inertia of each of the molecules. All other units are
defined in terms of these four units:

r∗ = r/σ0

E∗ = E/ε0

ρ∗ = ρσ3
0

t∗ =

√
ε0
mσ2

0

t = t/τ

T ∗ = kBT/ε0

p∗ = pσ3
0/ε0

D∗T = DTσ
−2
0 τ

D∗R = DRτ

distance

energy

density

time

temperature

pressure

translational diffusion constant

rotational diffusion constant

I used σ0 = ε0 = m = I = 1 in my simulations. Additionally, I used N = 256 molecules
for all simulations. For isotropic liquids I used T ∗ = 1.00, ρ∗ = 0.28, and for nematic
liquid crystals I used T ∗ = 1.00, ρ∗ = 0.34.

2 Liquid Crystals

2.1 Phenomenology

In an isotropic liquid, molecules have no prefered direction of alignment. However, certain
chemical species exhibit phases where the orientations of the constitutent molecules,
which have an ellipsoidal or rod-like shape, tend to point in a single direction, called the
director. This orientationally ordered phase is called a nematic phase. The degree of
ordering in a nematic phase is characterized by a quantity called the order parameter S,
which is defined as:

S =
1

N

N∑
i=1

〈
3

2
cos2 θi −

1

2

〉
where N is the number of molecules, θi is the angle that the ith molecule makes with the
director, and 〈·〉 represents an ensemble average.
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2.2 The Gay-Berne Model

The Gay-Berne potential (see [4]) is a anisotropic, single-site model of ellipsoidal molecules.
Its form is similar to that of the Lennard-Jones potential. Let ~r be the separation vector
between two molecules, let r = |~r|, let r̂ = ~r/r, and let Ω̂α be the orientation vector of
the αth molecule. This geometry in shown in Fig. 1. The potential between the ith and
jth molecules is given by:

u(~r, Ω̂i, Ω̂j) = 4εν(Ω̂i, Ω̂j)ε
′µ(r̂, Ω̂i, Ω̂j)

×

( σ0

r − σ(r̂, Ω̂i, Ω̂j) + σ0

)12

−

(
σ0

r − σ(r̂, Ω̂i, Ω̂j) + σ0

)6


Where:

ε(Ω̂i, Ω̂j) = ε0

[
1− χ2(Ω̂i · Ω̂j)

]−1/2

ε′(r̂, Ω̂i, Ω̂j) = 1− χ′

2

[
(r̂ · Ω̂i + r̂ · Ω̂j)

2

1 + χ′(Ω̂i · Ω̂j)
+

(r̂ · Ω̂i − r̂ · Ω̂j)
2

1− χ′(Ω̂i · Ω̂j)

]

σ(r̂, Ω̂i, Ω̂j) = σ0

(
1− χ

2

[
(r̂ · Ω̂i + r̂ · Ω̂j)

2

1 + χ(Ω̂i · Ω̂j)
+

(r̂ · Ω̂i − r̂ · Ω̂j)
2

1− χ(Ω̂i · Ω̂j)

])−1/2

The quantities χ and χ′ are anisotropy parameters which determine the range and
strength of the interaction, respectively. They are given by:

χ =
(σ‖/σ⊥)2 − 1

(σ‖/σ⊥)2 + 1

χ′ =
(εs/εe)

1/µ − 1

(εs/εe)1/µ + 1

The quantity σ‖/σ⊥ is the ratio of the major axis of the Gay-Berne molecule to the mi-
nor axis, and the quantity εs/εe is the ratio of the depth of the potential well when two
molecules are placed side-to-side to the depth of the potential well when two molecules
are placed end-to-end.

In this project, I used the length and energy ratios found in the original paper by Gay
and Berne [4]:

σ‖/σ⊥ = 3 =⇒ χ = 4/5

εs/εe = 5 =⇒ χ′ =

√
3− 1√
3 + 1

ν = 1

µ = 2

The Gay-Berne model produces isotropic liquid and nematic liquid crystal phases, as
well as smectic liquid crystal phases. The most easily changed parameter that controls
the system’s phase is the density. A phase diagram of the Gay-Berne model for the above
choice of parameters, reproduced from [5], is shown in Fig. 2.
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Figure 1: Geometry of a pair of ellipsoidal molecules.
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Figure 2: Phase diagram of the Gay-Berne fluid with parameters σ‖/σ⊥ = 3, εs/εe = 5.
The isotropic phase is labelled by I, and the nematic phase is labelled by N . Reprinted
from [5].
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3 The Potential Energy Landscape Ensemble and

Geodesics

One common approach to understanding the dynamics of many-body systems is to locate
special points on a system’s potential energy landscape: things like energy minima and
transition states. However, in many-body systems where the dynamics is dominated
by slow diffusion, there are a multitude of energy minima and it is unclear how much
information is gained by identifying these points. An alternative approach is to look at
pathways through the potential energy landscape [6], [7].

3.1 The Potential Energy Landscape Ensemble

The pathways we are interested in are those through what is called the potential energy
landscape ensemble. This is defined to be the collection of configuration space points, in
a system with a constant number of particles N and constant volume V , which have a
potential energy less than or equal to a certain landscape energy, EL. Mathematically,
this is written as1:

{R̃ |U(R̃) ≤ EL}

All configurations satisfying this condition (“allowed” configurations) have equal prob-
ability. One can visualize this ensemble by picturing a potential energy landscape which
is “filled up” with energy to some level EL. The ensemble then consists of a “sea” of
states all of which are equally allowed, interspersed with forbidden “islands” (which have

U(R̃) > EL). A visual representation of the ensemble is shown in figure 3.

3.2 The Path Integral Formulation of Diffusion

What do pathways through the potential energy landscape ensemble tell us? As it turns
out, the shortest of these pathways, called geodesics, yield information about the inherent
dynamics of the system. To understand why geodesics, which are geometric features of
the potential energy landscape, yield information about dynamics, let us examine the
path integral formulation of diffusion. Consider a particle diffusing in one dimension. It
can be shown [8] that the probability density for the particle propagating from an initial
position x0 to a final position x in a time t (i.e. the Green’s function for the particle) is
given by:

G(x0 → x, t) =

∫ x,t

x0,0

D[x(τ)] exp

[
− 1

4D

∫ t

0

(
dx

dτ

)2

dτ

]
Where D indicates integration over all possible paths, and D is the diffusion constant. If
instead of a single particle moving in one dimension we have N particles each moving in
three dimensions, then given a configuration space vector R = (~r1, . . . , ~rN), ~ri ∈ R3, the
Green’s function for propagating to this configuration from an initial configuration R0 in

1To refer to a configuration space vector of both positions and orientations for a system of linear
molecules, we will use the notation R̃ = (R, Ω̂), where R is the set of center-of-mass positions of the
molecules and Ω̂ is the set of molecular orientations.
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Figure 3: Visualization of the potential energy landscape ensemble. The shaded regions
represent allowed configurations. Reprinted from [6].

a time t is given by:

G(R0 → R, t) =

∫ R,t

R0,0

D[R(τ)] exp

[
− 1

4DT

∫ t

0

(
dR

dτ

)2

dτ

]

Where (dR/dτ)2 =
∑N

i=1(d~ri/dτ)2 and DT is the translational diffusion constant. For a
system of linear molecules, we need to consider not only translational motion, but also
rotational motion. We must therefore come up with a Green’s function for rotational
diffusion. It turns out (see Appendix C for a derivation) that, given an orientational
configuration vector Ω̂ = (Ω̂1, . . . , Ω̂N), the Green’s function for diffusion from an initial
orientational configuration Ω̂0 to Ω̂ in time t is:

G(Ω̂0 → Ω̂, t) =

∫ Ω̂,t

Ω̂0,0

D[Ω̂(τ)] exp

− 1

4DR

∫ t

0

(
dΩ̂

dτ

)2

dτ


Where (dΩ̂/dτ)2 =

∑N
i=1(dΩ̂i/dτ)2 and DR is the rotational diffusion constant.

3.3 Geodesics

Let us consider the terms in the exponentials of the translational and rotational Green’s
functions. When diffusion is slow, the diffusion constants are small: DT , DR → 0. This
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tends to make the term in the exponential a large, negative number, which makes the
paths’ contribution to the Green’s function small. The paths that contribute the most to
the Green’s function, therefore, are the ones for which integrals in the exponentials are
small. These integrals are proportional to classical actions:∫ t

0

(
dR

dτ

)2

dτ ∝
∫ t

0

2KT (τ)dτ∫ t

0

(
dΩ̂

dτ

)2

dτ ∝
∫ t

0

2KR(τ)dτ

Where KT and KR are translational and rotational kinetic energies, respectively. Mini-
mizing the integral of a quantity is equivalent to minimizing the integral of its square root;
the time integral of the square root of the kinetic energy is proportional to a kinematic
path length [7]:

lT =

∫ t

0

√
2KT (τ)dτ

lR =

∫ t

0

√
2KR(τ)dτ

So the dominant paths will be those that minimize these path lengths. These geodesic
path lengths are denoted gT , gR.

3.4 Diffusion Constants from Geodesic Lengths

One can equate different expressions for the diffusion Green’s functions to derive expres-
sions for diffusion constants in terms of geodesic lengths. The translational and rotational
diffusion constants are related to the corresponding geodesic lengths to the following for-
mulae:

DT

DT 0

= lim
∆R→∞

(
∆R

gT

)2

DR

DR 0

= lim
∆ψ→∞

|∆ψ|2

[gR/(L/2)]2

Here, the 0 subscripts denote high-temperature or low-density reference diffusion con-
stants, ∆R is the Euclidean distance between the final and inital center-of-mass positions
of two configurations, ∆ψ is the total angular distance between the initial and final orien-
tations of all the molecules, and gT and gR are the translational and rotational geodesic
lengths. These formulae, which are derived in Appendix D, illustrate the direct connec-
tion between the geometry and dynamics of a molecular liquid.

4 Geodesic Path-Finding Algorithm

How do we actually locate geodesics through the potential energy landscape ensemble?
By the Kuhn-Tucker theorem, the geodesics will consist of unions of straight line seg-
ments (through the “sea” of allowed configurations) and segments along the boundaries
of obstacles (the “islands”) [7]. We can thus divide the path-finding algorithm into a
part for calculating the free particle path and a part for calculating the path along the
boundaries.
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4.1 Endpoint Generation

To begin, we need to generate pairs of configuration space points between which to
compute a path. This was done via molecular dynamics simulation (see Appendix A.)

To obtain the endpoints for a given Euclidean distance, ∆R̃, 16 molecular dynamics
trajectories, each with different, randomly seeded intial conditions, was run. From each
of these trajectories, 4 endpoint pairs were chosen, giving a total of 64 endpoint pairs for
each value of ∆R̃. To ensure that the pairs selected from each trajectory were statistically
independent, the ending point of one pair and the start point of another were separated
by 50τ along the trajectory.

4.2 Free Particle Motion

The motion in the allowed regions of configuration space is just free-particle motion:

~rj(τ) = (1− τ)~rj,0 + τ~rj,f

Ω̂j(τ) =
sin[∆ψj(1− τ)]Ω̂j,0 + sin[∆ψjτ ]Ω̂j,f

sin[∆ψj]

j = 1, . . . , N

Here, the 0 subscript denotes an initial value and the f subscript denotes a final value,
∆ψj is the angle between Ω̂j,0 and Ω̂j,f , and τ is a progress variable which ranges from
0 to 1. For a derivation, see [1]. In the algorithm we use, the system takes free particle
steps of total length 5 × 10−3σ0 until it lands in a forbidden region, at which point we
must deal with motion along the boundary as described below.

4.3 Motion Along Boundaries

To deal with motion along the boundary, we use a Newton-Raphson root-finding scheme,
the details and derivation of which can be found in [1]. Basically, if the system takes
a free-particle step and finds itself in a forbidden region, then a Newton-Raphson root
search is used to take it to the point on the boundary the shortest distance away. Working
out the magnitude and direction of this “escape step,” one finds that the positions and
orientations of the molecules must change in the following way:

∆~rj = −
(
I

m

)
γ ~Fj

∆Ω̂j = (cos(∆ψj)− 1)Ω̂0,j + sin(∆ψj)Ĝ
⊥
j

j = 1, . . . , N

Where:
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sin(∆ψj) = −γ
∣∣∣Ĝ⊥j ∣∣∣

cos(∆ψj) =

√
1−

(
γ
∣∣∣Ĝ⊥j ∣∣∣)2

γ =
∆U(

I
m

)
F 2 + (G⊥)2

F 2 =
∑
j

∣∣∣~Fj∣∣∣2
(G⊥)2 =

∑
j

∣∣∣~G⊥j ∣∣∣2
~Fj =

∑
k 6=j

~fk

~G⊥j =
∑
k 6=j

~g⊥k

(~fk)µ = − ∂U

∂rk,µ

(~gk)µ = − ∂U

∂Ωk,µ

~g⊥k = ~gk · (1− Ω̂kΩ̂k)

Here, m = 1 is the mass of a molecule, I = 1 is the moment of inertia of a molecule,√
I/m is a quantity which is functionally equivalent to L/2, half the bond length, for

a diatomic molecule in [1], and ∆U = EL − U(R̃) is the difference in potential energy
between the configuration at its current “forbidden” location and the potential energy at
the boundary. We have ∆U < 0 and U(R̃) > EL for a forbidden configuration. In the

equations for ~Fj and ~G⊥j , the sum is over the forces and auxiliary torques from all the
other molecules acting on molecule j. When the molecular positions and orientations are
changed by the prescribed amounts ∆~rj and ∆Ω̂j, the potential is lowered to the value
of the landscape energy.2

4.4 Optimization

The algorithm described above is guaranteed to find paths which satisfy the Kuhn-Tucker
theorem; however, this is a necessary but not sufficient condition for paths to be geodesics.
In order to locate the “true” geodesics we optimize the paths found using the above
algorithm by making Monte Carlo moves. A single configuration along the unoptimized
“candidate geodesic” path is selected at random, and one of the molecules is selected at
random. The position and orientation of the selected molecule are then perturbed by the
following amounts:

2In practice, since these equations are linear approximations, it may take a few iterations to make the
potential sufficiently close to the landscape energy. Thus this escape step procedure is repeated until the
potential is within some tolerance of the landscape energy: (U(R̃)−EL)/|EL| < δE . We set δE = 10−6

in this work.
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δ~r = 0.01σ0

δψ = δ~r/
√
I/m

Where the rotation by δψ is performed about a an axis v̂ perpendicular to the orientation
vector, chosen randomly by generating a random unit vector λ̂ on the surface of a sphere
(see [9] for details) and then calculating:

v̂ = Ω̂j × λ̂

Next, we apply apply the path-finding algorithm to compute the distance between the
starting point and the perturbed configuration, and the distance between the perturbed
configuration and the end point. If the sum of these distances is less than the original
geodesic distance, then we take the union of the two paths to be the new geodesic path,
and throw out the old one. Otherwise, we keep our original geodesic path. We repeat
this process 10 times.

This algorithm is nearly identical to the one used in [1]. One significant difference,
however, is that in [1] when a geodesic pathway through the perturbed configuration was
unable to be located, i.e. the algorithm got “stuck,” the entire optimization procedure
was restarted. We do not do this - when the algorithm is unable to find a path through
the perturbed configuration, we simply attempt a new trial move, and count the “unsuc-
cessful” trial as a trial move. (That is, we make 10 trial moves regardless of whether a
move successfully locates a path or not.)

In practice, these optimizations change the geodesic path lengths only slightly; see
Appendix B for further discussion.

4.5 Path Lengths

To compute geodesic path lengths, we simply sum the distances between successive con-
figurations along the geodesic path. Assuming that there are M total configurations, and
N total molecules, the geodesic path lengths are computed as:

gtrans =
M−1∑
m=1

√√√√ N∑
i=1

(~ri,m+1 − ~ri,m)2

grot =
M−1∑
m=1

√√√√ N∑
i=1

I

m

(
arccos(Ω̂i,m+1 · Ω̂i,m)

)2

gtotal =
M−1∑
m=1

√√√√ N∑
i=1

[
(~ri,m+1 − ~ri,m)2 +

I

m

(
arccos(Ω̂i,m+1 · Ω̂i,m)

)2
]
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To get the Euclidean distances between endpoint configurations, we simply use:

∆R̃ =

√√√√ N∑
i=1

[
(~ri,f − ~ri,0)2 +

I

m
(arccos

(
Ω̂i,f · Ω̂i,0)

)2
]

∆R̃trans =

√√√√ N∑
i=1

(~ri,f − ~ri,0)2

∆R̃rot =

√√√√ N∑
i=1

I

m
(arccos

(
Ω̂i,f · Ω̂i,0)

)2

4.6 Implementation Details

All code was written in C. For pseudo-random number generation I used the Mersenne
Twister implementation found in the GNU Scientific Library [10]. To seed the PRNG, I
used “truly random” numbers generated from random.org [11].

5 Results

5.1 Order Parameter along Geodesics

The most significant discovery made in this study was how the order parameter changes as
the system traverses a geodesic. In the liquid phase, the order parameter tends to fluctu-
ate about a value close to zero; in the liquid crystal phase, the order parameter fluctuates
about a value much closer to one. When one does a molecular dynamics simulation of
the Gay-Berne model, this is what one sees (see Fig. 4.) This is also what ones sees along
the course of a geodesic pathway between isotropic-phase endpoints. However, this is not
what one sees along geodesic pathways between nematic-phase endpoints. Along these
geodesics, the order parameter starts off at a “normal” nematic value (near 0.8, in this
case), then decays to a low, “isotropic” value along the course of the geodesic, gradually
climbing back up to its normal value at the final configuration (see Fig. 5.) What this
indicates is that the shortest pathway between nematic-phase endpoints, in the potential
energy landscape ensemble we have defined, is one which disorders and goes through a
normal liquid phase.

But this does not correctly represent the dynamics of the nematic phase! If one wants
to investigate molecular motion in an ordered nematic phase, it does not make sense to
allow the system to go into a disordered isotropic phase. It appears that we missed an
important piece of physics in setting up our problem: constraining the phase that the
system can be in along the course of the geodesic. The potential energy landscape ensem-
ble involves an inequality constraint: that the potential energy be less than or equal to a
particular value. Compare this to, for example, the canonical ensemble, where the occu-
pation of different energy states is controlled by an equality (namely that the temperature
be constant.) A particular set of values N, V, and T in the canonical ensemble defines a
unique phase; however, this is not the case for the potential energy landscape ensemble.
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Particular values of N, V , and EL in the potential energy landscape ensemble, though,
can include configurations which are in different phases; this has been demonstrated for
atomic liquids [7]. That this is so is perhaps not too surprising - ensembles tend to yield
different thermodynamic results in the vicinity of phase transitions.

In order to keep the system in the nematic phase along the course of its geodesics, we
plan to implement a constraint: that the order parameter have a fixed value along the
course of the geodesics. We are currently working out how to include this constraint in
our path-finding algorithm.

5.2 Geodesic Lengths & Ratios

The following geodesic lengths were calculated:

gtotal =

∫ t

0

√√√√ N∑
j=1

m

(
d~rj
dτ

)2

+
N∑
j=1

I

(
dΩ̂j

dτ

)2

dτ

gT =

∫ t

0

√√√√ N∑
j=1

m

(
d~rj
dτ

)2

dτ

gR =

∫ t

0

√√√√ N∑
j=1

I

(
dΩ̂j

dτ

)2

dτ

gzb =

∫ t

0

√√√√ N∑
j=1

m

(
dzbj
dτ

)2

dτ

gxb,yb =

∫ t

0

√√√√ N∑
j=1

m

(
dxbj
dτ

)2

+m

(
dybj
dτ

)2

dτ

gR||n̂ =

∫ t

0

√√√√ N∑
j=1

I

(
dΩ̂j

dτ
· n̂n̂ · dΩ̂j

dτ

)
dτ

gR⊥n̂ =

∫ t

0

√√√√ N∑
j=1

I

(
dΩ̂j

dτ
· (1− n̂n̂) · dΩ̂j

dτ

)
dτ

From these lengths, we calculated the following ratios:

gT/gR

gzb/gxb,yb

gR||n̂/gR⊥n̂

These are the ratio of translational to rotational length, the ratio of body-fixed z length
to body-fixed x and y length, and the ratio of rotational length parallel to the director to
the length perpendicular to the director. When these are compared to their equilibrium
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contour-length equivalents, they ought to yield mechanistic information about the motion
of ellipsoidal molecules in liquid and liquid crystal phases. The equilibrium predictions
for the corresponding contour-length ratios are:

lT/lR =
√

3/2

lzb/lxb,yb = 1/
√

2

lR||n̂/lR⊥n̂ = 1/
√

2 (isotropic)

=

√
1− S
2 + S

(nematic)

where S is the order parameter in the nematic phase. Derivations of these equilibrium
predictions can be found in appendix E.

It should be noted that, although 64 endpoint pairs for computing geodesics were
generated for each Euclidean endpoint separation distance and for each phase (isotropic
or nematic), a geodesic was not able to be located for every such pair; in some cases our
path-finding algorithm failed.3 The number of successfully located paths (and thus the
number of paths averaged over) for each endpoint separation distance and each phase is
shown in the table below:

∆R̃/σ0 Isotropic Nematic
25 63 64
50 61 57
100 61 57
150 56 61
200 56 62
300 50 60
400 56 61
500 59 54

The converged (∆R̃ = 500σ0) geodesic ratios, for the optimized paths, are shown
below:

Isotropic Nematic Equilibrium value
gT/gR 1.918 ± 0.00169 1.723 ± 0.00235 1.225
gzb/gxb,yb 1.013 ± 0.00186 1.211 ± 0.00253 0.707
gR||n̂/gR⊥n̂ 0.705 ± 0.00150 0.462 ± 0.0110 0.707/0.275

The ± indicates standard error. The equilibrium nematic value of gR||n̂/gR⊥n̂ (to the
right of the slash) used an order parameter of S = 0.789. Plots of these ratios, versus
their equilibrium predictions, for different values of the endpoint separation, are shown
in Figs. 6-8.4

I also checked that the ratios of different geodesic lengths to the total endpoint sepa-
ration distance converged. The results are shown in Figs. 9-15.

3If the algorithm failed to travel more than 1.0× 10−8σ0 from its previous location for 1000 steps in
a row, then the algorithm was said to have “failed.”

4Due to time constraints, optimized paths for ∆R̃ = 200σ0, 400σ0 were not calculated, so length ratios
for these values do not appear in the figures.
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There are several observations to be made about the above results. Let us begin with
the caveat that we cannot draw any real conclusions from the nematic results, since we
know that the dynamics are incorrect.

The fact that gT/gR is greater than the equilibrium prediction is consistent with Daniel
Jacobson’s result for diatomic molecules [1]: along geodesics, linear molecules perform
just enough rotation to allow them to slide (translate) through narrow “channels.” Plots
of the bond length-normalized diatomic ratios, compared with the equivalent isotropic
Gay-Berne ratio, are shown in Figs. 16 and 17.

Next, we see that the ratio of body-fixed z motion to body-fixed x and y motion is
larger than the equilibrium prediction (in both the isotropic and nematic phases.) This
tells us that the molecules of a Gay-Berne fluid tend to translate in a direction parallel
to their long axis, in accord with our picture of molecules threading their way through
narrow channels.

The ratio of rotational motion parallel to the director to rotational motion perpen-
dicular to the director exhibits interesting behavior. For the isotropic case, the geodesic
ratio is identical to the equilibrium prediction. This is as it should be - in the isotropic
phase, one does not have a well-defined director (in the sense that the molecules do not
tend to line up in a particular direction - one can still calculate an instantaneous director
as an eigenvector of the Q tensor, but it is essentially an arbitrary axis) and so we would
not expect the geodesic result to differ from the equilibrium prediction.

Examining the convergence of gR||n̂/gR⊥n̂ in the nematic case, we see that the geodesic

result agrees, more or less, with the equilibrium prediction for small ∆R̃, but as ∆R̃
increases, the nematic ratio converges to a value larger than that of the equilibrium
prediction. Thus, dΩ̂/dt is parallel to the director more often than one expects. But this
means (see Fig. 18) that Ω̂ is spending more time perpendicular to the director, contrary
to the notion that molecules in the nematic phase spend most of their time nearly parallel
to the director! This behavior makes sense in light of the fact that the order parameter
along the nematic geodesic decays to an isotropic value.5

5.3 Diffusion Constants

The geodesic predictions for the diffusion constants, using the lengths of the optimized
paths for ∆R̃ = 500σ0, are:

Diso∗
T

D∗T 0

≈ 0.374
Dnem∗
T

D∗T 0

≈ 0.239

Diso∗
R

D∗R 0

≈ 0.00417
Dnem∗
R

D∗R 0

≈ 0.00206

The reference diffusion constants were obtained by performing a molecular dynamics
simulation (see Appendix A) of the Gay-Berne fluid at low density: ρ∗ = 0.05, T ∗ = 1.0.

5In fact, this was the first hint that something might be wrong with the nematic geodesics.
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They were found to be:

D∗T 0 ≈ 1.480

D∗R 0 ≈ 0.657

This allows us to determine the geodesic predictions for the diffusion constants. I
have compared the geodesic predictions with the MD results in the table below:

Geodesic MD
Diso∗
T 0.553 0.109

Dnem∗
T 0.353 0.0518
Diso∗
R 0.00274 0.0568

Dnem∗
R 0.00136 0.00881

It is also useful to compare the ratios of diffusion constants in the nematic and isotropic
phases. The geodesic predictions for these ratios and the corresponding MD results are
given below:

Geodesic MD
Diso∗
T /Dnem∗

T 1.57 2.10
Diso∗
R /Dnem∗

R 2.02 6.45

As can be seen, the geodesic predictions are not great. This is likely because the
diffusion constants do not differ by orders of magnitude, which is the regime where we
would expect geodesic predictions of diffusion constants to be highly accurate. Addi-
tionally, since the geodesics we found for the nematic phase do not accurately represent
the dynamics, we would expect neither the nematic diffusion constants nor the ratio of
isotropic to nematic diffusion constants to be correct.
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Figure 4: Order parameter during a molecular dynamics simulation. l represents the
distance the system has travelled along its trajectory. This data was taken during the
data collection phase of an isotropic MD run and a nematic MD run (see Appendix A.)

Figure 5: Order parameter along the course of a single (unoptimized) geodesic between

Euclidean endpoints separated by ∆R̃ = 500σ0. l represents the distance the system has
travelled along the geodesic.
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Figure 6: Ratio of translational to rotational geodesic lengths. The isotropic and nematic
MD points overlap.

Figure 7: Ratio of body-fixed z to x, y translational geodesic lengths. The isotropic and
nematic MD points overlap.
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Figure 8: Ratio of parallel-to-director to perpendicular-to-director rotational geodesic
lengths. As can be seen, the mean-field result is a decent predictor of the molecular
dynamics ratios, but it is not perfect.

Figure 9: Convergence of total geodesic lengths with respect to ∆R̃.

21



Figure 10: Convergence of translational geodesic lengths with respect to ∆R̃.

Figure 11: Convergence of rotational geodesic lengths with respect to ∆R̃.
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Figure 12: Convergence of body-fixed z translational geodesic lengths with respect to
∆R̃.

Figure 13: Convergence of body-fixed x, y translational geodesic lengths with respect to
∆R̃.
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Figure 14: Convergence of rotational geodesic lengths parallel to director with respect to
∆R̃.

Figure 15: Convergence of rotational geodesic lengths perpendicular to director with
respect to ∆R̃.
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Figure 16: Translational-to-rotational geodesic ratio, normalized by bond length, for
diatomic molecules of bond lengths L = 0.5σ and L = 0.6σ. Modified from [2].

Figure 17: Translational-to-rotational geodesic ratio, normalized by an effective “bond
length” 2

√
I/m, for isotropic Gay-Berne molecules. In both this figure and the above

figure, the ratio of translational to rotational length is greater than that of the equilibrium
prediction (= 2 ∗

√
3/2.)
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Figure 18: An ellipsoidal molecule with different orientations with respect to the director.
As can be seen, when dΩ̂/dt is perpendicular to the director, the orientation vector is
aligned with the director, and when dΩ̂/dt is parallel to the director, the orientation
vector is perpendicular to the director.
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6 Conclusion

We have discovered that our formulation of a geodesic analysis of liquid crystal formers
was lacking a key piece of physics: constraining the system to stay in a single phase. This
was demonstrated by showing that the order parameter of a system travelling along a
geodesic from one nematic-phase endpoint to another decays to an isotropic value. To
remedy this problem, we are working on creating an algorithm to constrain the order
parameter to maintain a particular value along the geodesic. We also saw that the
behavior of the isotropic-phase Gay-Berne system is similar to that of a diatomic liquid
previously studied [1]. This is reassuring - it confirms that the motional motifs previously
suggested for diatomics hold for other linear molecules as well.
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Appendices

A Molecular Dynamics Simulation

A.1 Introduction

I wrote a program in C to perform molecular dynamics simulations of the liquid-crystal
forming Gay-Berne fluid. The Gay-Berne model exhibits isotropic liquid, nematic liquid
crystal, and smectic liquid crystal phases. Here, I report the results of simulations of
the isotropic liquid phase and the nematic liquid crystal phase. These results include
measurements of various thermodynamic, dynamic, and structural quantities of the two
different phases under consideration.

A.2 Parameters

For both the isotropic and nematic phase simulations, I used the following parameters:

N = 256

δt = 0.001τ

T ∗target = 1.00

σ‖/σ⊥ = 3

εs/εe = 5

ν = 1

µ = 2
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For the isotropic phase simulation I used ρ∗ = 0.28, and for the nematic phase simulation
I used ρ∗ = 0.34. These values were selected based on the phase diagram of the Gay-Berne
fluid, which can be found in [5].

A.3 Setting Up

A.3.1 Initial Configuration

The Gay-Berne molecules were initialized in an α-FCC lattice configuration at a low
density of ρ∗ = 0.10. The center-of-mass positions of the molecules were placed at each
of the lattice sites, and the orientations of each of the molecules were assigned, in the
manner prescribed by Allen & Tildesley [12].

A.3.2 Initial Velocities and Angular Velocities

The initial velocities and angular velocities were selected from Gaussian distributions us-
ing the Box-Muller method [9] The distribution for the time derivatives of the orientation
vectors, and hence the angular velocities, is analogous that that for the center-of-mass
velocities:

f(
˙̂
Ω) =

(
I

2πkBT

)3/2

exp

[
− I

2kBT
(

˙̂
Ω · ˙̂

Ω)

]
The total center-of-mass linear momentum and angular momentum of the system were
set to zero at the beginning of each simulation. The total linear momentum stayed at
zero, to six decimal places, throughout the course of the simulations. The total angular
momentum, however, fluctuated significantly about zero - this is due to the fact that
cubic periodic boundary conditions do not conserve angular momentum [13].

A.3.3 Periodic Boundary Conditions

Periodic boundary conditions were enforced in the following way. The center of the
(cubic) simulation box was assigned coordinates of (0, 0, 0), and the length each side of
the box was set to be L. If any of the center-of-mass coordinates of a molecule was found
to exceed L/2, then L was subtracted from that coordinate. If any of the coordinates
was found to be less than −L/2, then L was added to that coordinate. This procedure
was repeated at each time step.

A.3.4 Integrating the Equations of Motion

The equations of motion governing the center-of-mass positions were integrated using the
leapfrog algorithm, and those governing the molecular orientations were integrated using
Fincham’s rotational leapfrog algorithm [13]. The equations governing center-of-mass
positions are:

~r(t+ δt) = ~r(t) + δt~v(t+
1

2
δt)

~v(t+
1

2
δt) = ~v(t− 1

2
δt) + δt~a(t)

Here ~r is the center-of-mass position of a molecule, ~v is the center-of-mass velocity, and
~a is the acceleration, given by ~f = m~a. This set of equations was, of course, applied to
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Figure 19: Total momentum of the system over an entire simulation.

Figure 20: Total angular momentum of the system over an entire simulation. The com-
ponents are for the body-fixed frame, hence the z component is zero. Larger fluctuations
near the beginning of the simulation are due to higher temperature. These plots are for
a nematic phase simulation, but those for the isotropic phase are similar.
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each molecule at every time step. Note that this algorithm requires knowledge of the
velocities only at every half-integer time step. To obtain the velocities at integer time
steps, the following formula is used:

~v(t) =
1

2
(~v(t− 1

2
δt) + ~v(t+

1

2
δt))

The equations governing molecular orientations are given by:

Ω̂(t+ δt) = Ω̂(t) + δt
˙̂
Ω(t+

1

2
δt)

˙̂
Ω(t+

1

2
δt) =

˙̂
Ω(t− 1

2
δt) + δt~g⊥(t)/I − 2[

˙̂
Ω(t− 1

2
δt) · Ω̂(t)]Ω̂(t)

~g⊥ = ~g − (~g · Ω̂)Ω̂

Here Ω̂ is the molecular orientation,
˙̂
Ω is the time derivative of the molecular orientation,

and ~g is the “auxiliary torque,” defined by:

τ = Ω̂× ~g

At each time step, ~a(t) and ~g(t) must be calculated, using the formulas:

~a = − 1

m

∂U

∂~r

~g = −∂U
∂Ω̂

Expressions for these quantities for the Gay-Berne potential are derived in Appendix A.8.

A cutoff radius of L/2 was used for the simulations, and the minimum image convention
was employed. It was necessary to re-normalize the orientation vectors at each time step.
If the vectors were not re-normalized, their magnitudes would gradually drift, resulting
in a loss of energy conservation.

A.4 Equilibration into different phases

A number of steps are necessary to take the system from its initial configuration to a
final, equilibrated configuration in the appropriate phase. These steps are as follows:

1) Melting: Sample the initial velocities and angular velocities from a high-temperature
(T ∗ = 5.00) distribution, and allow the system to relax for 25τ . This allows the system
to “melt” from its initial lattice configuration.

2) Compression: Compress the system, by increasing the density in small increments
(ρ∗new = ρ∗old + 0.005) every 0.1τ , until the final density is reached. During this time,
rescale the velocities and angular velocities to T ∗ = 3.00 (approximately the temperature
to which the system relaxes as it melts.) This prevents the system’s temperature from
becoming extremely high due to the compression. To rescale the velocities, I applied the
following formula to each molecule:

vnew =

(
Ttarget
Tsystem

)1/2

vold
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I also applied an identical formula to the time derivatives of the molecular orientation
vectors.

3) Cooling: Rescale the velocities and angular velocities every 1τ in small6 temperature
increments (T ∗new = T ∗old − 0.1) until the desired temperature is reached. Continue to
rescale the velocites and angular velocities to the desired temperature for another 10τ .
Allow the system to relax for 50τ , then do another period of rescaling, every τ for 10τ .7

4) Equilibration: Allow the system to relax for 200τ . That this is a sufficient amount of
time for relaxation is demonstrated in Figs. 21 and 22.

After the system has finished equilibrating, data is collected for 100τ. Since we sample
only every 10δt to avoid correlations in the data, this corresponds to averaging over 10000
configurations.

A.5 Thermodynamic Quantities

I calculated the following thermodynamic quantities in the isotropic and nematic phases:
total, potential, and translational and rotational kinetic energies; translational and rota-
tional temperature; pressure; the orientational order parameter, S; and, in the nematic
phase, the (absolute value of) the components of the director. Here, I report the average
values and standard deviations of these quantities.

A.5.1 Reported Errors

All the reported errors are in the form of standard (RMS) deviations. The standard
deviation of an observable A is defined as:√

〈δA2〉 =
√
〈(A− 〈A〉)2〉

Where 〈A〉 denotes the time (or ensemble) average of A.

A.5.2 Average Values

All averages were taken over 10000 configurations. I shall first give mathematical def-
initions for all of the quantities under consideration. Let ~ri denote the center-of-mass
position of the ith molecule, ~vi the center-of-mass velocity of the ith molecule, Ω̂i the

orientation of the ith molecule,
˙̂
Ωi the time derivative of the orientation vector of the ith

molecule, and ~ωi (= Ω̂i × ˙̂
Ωi) the angular velocity of the ith molecule. Then we have:

6The temperature increments can be significantly larger than the ones I used here. It should be fine
to use something like T ∗

new = T ∗
old − 1.0.

7The reason for this rescaling scheme is that when equilibrating into the nematic phase, if the system
is cooled and then rescaling is applied for just a few τ , the system’s kinetic energy will slowly rise while
the potential energy will slowly fall (while the total energy stays constant) for several tens of τ . After
this period of time the kinetic and potential energies no longer change.
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U =
∑
i

∑
j>i

u(~r, Ω̂i, Ω̂j)

Ktrans =
1

2
m

N∑
i=1

~vi · ~vi

Krot =
1

2
I

N∑
i=1

˙̂
Ωi · ˙̂

Ωi

E = U +Ktrans +Krot

Ttrans =
2

3NkB
Ktrans =

m

3NkB

N∑
i=1

~vi · ~vi

Trot =
1

kB
Krot =

I

2kB

N∑
i=1

˙̂
Ωi · ˙̂

Ωi

p = ρkBT +
1

3V

N∑
i=1

~ri · ~fi

Note that in the definition of pressure I wrote T with no subscript - this is because the
translational and rotational temperatures should, and do, agree, and so I denote their

common value as T . Note also that I am using
˙̂
Ω· ˙̂Ω instead of ~ω ·~ω above. It is permissible

to do this because
˙̂
Ω · ˙̂

Ω = ~ω · ~ω.8

The (instantaneous) order parameter can be defined in terms of the director n̂ as:

S =
1

N

N∑
i=1

3

2
cos2 θi −

1

2

where θi = Ω̂i · n̂. However, we do have not the director a priori. We can alternatively
calculate S as the largest eigenvalue of the Q-tensor:

↔
Q=

1

2N

N∑
i=1

(3Ω̂iΩ̂i − 1)

Which does not require the value of the director. In fact, the director is obtained as the
eigenvector corresponding to the largest eigenvalue of this tensor. To calculate the eigen-
values and eigenvectors, I used code freely available from the GNU Scientific Library [10].9

One way to check that the Q-tensor is being calculated properly is to make sure that the
trace of the tensor is zero (see Appendix A.9 for a proof.) Reassuringly, it was found that
the trace of the tensor was zero, to an accuracy of 6 decimal places.

8Proof: since ~ω = Ω̂× ˙̂
Ω, we have ~ω · ~ω = (Ω̂× ˙̂

Ω) · (Ω̂× ˙̂
Ω) = (Ω̂ · Ω̂)(

˙̂
Ω · ˙̂

Ω)− (Ω̂ · ˙̂
Ω)2. But Ω̂ and

˙̂
Ω

are orthogonal, so the second term is zero. Also, Ω̂ · Ω̂ = 1, so we have the result ω̂ · ω̂ =
˙̂
Ω · ˙̂

Ω.
9To make sure that the code worked, I checked that it gave the correct results for a simple matrix,

for which eigenvectors and eigenvalues could be easily calculated analytically.

32



Average Values in the Isotropic phase, ρ∗ = 0.28
U∗/N K∗T/N K∗R/N E∗/N T ∗T T ∗R p∗ S

〈A〉 -2.80 1.48 0.99 -0.3211 0.99 0.99 2.3 0.12√
〈δA2〉 0.0549 0.0573 0.0526 0.000232 0.0382 0.0526 0.142 0.0494

Average Values in the Nematic phase, ρ∗ = 0.34
U∗/N K∗T/N K∗R/N E∗/N T ∗T T ∗R p∗ P2

〈A〉 -3.33 1.50 1.01 -0.824 1.00 1.01 5.0 0.77√
〈δA2〉 0.0628 0.0624 0.0557 0.000307 0.0416 0.0557 0.201 0.0207

Average Absolute Values of the Nematic Director
nx ny nz

〈A〉 0.12 0.987 0.07√
〈δA2〉 0.0569 0.00574 0.0477

A.5.3 A Note on Energy Conservation

Initially, I tried using 108 molecules in my simulations. However, I discovered an energy
conservation problem that was caused by using this few molecules. The Gay-Berne po-
tential is quite close to zero by about r = 4.0σ0; however, the densities at which we are
studying gay-berne molecules necessitate simulation box lengths of around 7σ0 (so that
L/2 ≈ 3.5σ0) for 108 molecules. In other words, the potential was being cut off before
going to zero, leading to a lack of energy conservation. Using the next largest number
of molecules that an FCC lattice in a cubic box can accomodate, 256, resulted in energy
conservation to within parts in 104. Thus the minimum number of Gay-Berne molecules
that should be used in a cubic box, starting from an FCC lattice, at densities of around
ρ∗ = 0.3, is 256.

A.6 Structural Quantities

The values of the orientational order parameter and the director give some insight into
the structure of the phase, but in order to understand the local structure it is necessary
to calculate the radial distribution function.

A.6.1 Radial Distribution Function

The radial distribution function is given by:

g(r) =
V

N2

〈∑
i

∑
j 6=i

δ(~r − ~rij)

〉
Where ~rij refers to the vector between the center-of-mass positions of molecules i and

j. Note that this formula does not take the orientations of the molecules into account.
It is possible to define distribution functions which do take into account the orientations
of the molecules, but here I shall simply use this “orientationally-averaged” function.
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Figure 21: Eigenvalues of the Q-tensor, and sum of these eigenvalues, in the isotropic
phase. In this figure and in Fig. 22, time starts from the initial FCC lattice configuration.
From t = 0 to approximately t = 130τ , the system is heated, compressed, and cooled.
The system equilibrates over the next 200τ . The fact that the order parameter is stable
over this time is evidence that this is sufficient time for equilibration.

Figure 22: Eigenvalues of the Q-tensor, and sum of these eigenvalues, in the nematic
phase. The largest eigenvalue is the order parameter, S.
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Figure 23: Potential, total kinetic, and total energies in the isotropic phase, during the
data collection phase of the simulation.

Figure 24: Potential, total kinetic, and total energies in the nematic phase, during the
data collection phase of the simulation.
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The radial distribution function can be understood as the probability, averaged over
all molecules, of finding a molecule in a spherical shell defined by the radii r and r + δr,
where r defines the distance away from some given molecule. This probability is then
normalized by the same probability for an ideal gas. An algorithm for computing g(r) is
outlined in [14].

A.6.2 Nearest Neighbors

The number of nearest neighbors of an “average” molecule can be calculated as an integral
of g(r):

N1st shell = ρ

∫
r<1stmin

d~rg(r)

= 4πρ

∫
r<1stmin

drr2g(r)

The integration was performed using (the extended) Simpson’s rule (see [15].) To find
the first minimum, start from the fist nonzero value of g(r). Consider a (discretized)
distance ri. If g(ri) > g(ri+1) and g(ri) > g(ri−1), then we have found the first minimum.
Otherwise, look at ri+1 and repeat the procedure.

I obtained the following values for the number of nearest neighbors:

Isotropic Nematic
Nneighbors ≈5.49 Nneighbors ≈5.65

For both the isotropic and nematic phases, at similar densities, we see that the number
of nearest neighbors is around 6. This is markedly different from the value of 12 which is
found for simple atomic liquids. It seems likely that this is due to the elongation of the
Gay-Berne molecules making it harder to pack as many of them close together.

A.7 Dynamical Quantities

The dynamics of the Gay-Berne fluid was probed using correlation functions. The corre-
lation function of two observables, A and B, is given by:

CAB(t) = 〈A(0)B(t)〉

= lim
T→∞

1

T

∫ T

0

dt′A(t′)B(t+ t′)

It is straightforward to discretize this quantity, as discussed in [14]. When A = B, we
have an autocorrelation function. Autocorrelation functions are related to transport co-
efficients by so-called Green-Kubo relations.

We can also define a normalized correlation function:

cAB(t) =
〈A(0)B(t)〉
〈A(0)B(0)〉
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Figure 25: Radial distribution function in the isotropic phase.

Figure 26: Radial distribution function in the nematic phase.
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The plots in this section are all of normalized correlation functions. Values of the corre-
lation functions were calculated every 10δt, and each of these values was averaged over
9000 configurations and over all 256 molecules. All the integrations necessary to calculate
the diffusion coefficients were done using Simpson’s rule.

A.7.1 Velocity Autocorrelation Function

The velocity autocorrelation function is given by:

Cvv(t) = 〈~v(0) · ~v(t)〉

A Green-Kubo relation [16] allows us to use this correlation function to calculate a trans-
lational diffusion coefficient:

DT =
1

3

∫ ∞
0

〈~v(0) · ~v(t)〉dt

In the nematic phase, where there is a preferred direction of orientation, we can calculate
translational diffusion coefficients parallel and perpendicular to the director:

D
‖
T =

1

3

∫ ∞
0

〈~v(0) · n̂n̂ · ~v(t)〉dt

D⊥T =
1

3

∫ ∞
0

〈~v(0) · (1− n̂n̂) · ~v(t)〉dt

Here n̂n̂ is the director dyad, obtained by taking the “outer product” of n̂ with itself,
and 1 is the unit tensor. I obtained the following values for the translational diffusion
coefficients:

Isotropic Nematic
D∗T ≈0.109 D∗T ≈0.0518

D
∗‖
T ≈ 0.0366

D∗⊥T ≈ 0.0152

As expected, the translational diffusion coefficient is smaller in the denser and more
ordered nematic phase. Also, it is apparent from that translational diffusion is easier in
the direction of the director than in directions perpendicular to the director.

A.7.2 Orientation Autocorrelation Function

The rank l orientation autocorrelation functions are defined as:

C l(t) = 〈Pl(Ω̂(0) · Ω̂(t))〉

We shall employ the second-rank function here, because this function is insensitive to
whether the orientation vectors are pointing “North” or “South:” it treats both directions
as representing the same symmetry axis.

C2(t) = 〈P2(Ω̂(0) · Ω̂(t))〉

=

〈
3

2
(Ω̂(0) · Ω̂(t))2 − 1

2

〉
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Figure 27: Velocity autocorrelation function in the isotropic phase.

Figure 28: Velocity autocorrelation function in the nematic phase.
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This function gives us information about the degree of orientational order in the system.
The asymptotic value of this correlation function is the square of the order parameter:

lim
t→∞

C2(t) = S2

A proof of this can be found in Appendix A.10. From this equation, we see that in
a perfectly isotropic system, where the order parameter is zero, the asymptotic value
of C2(t) would be zero. On the other hand, in an anisotropic system where there is a
high degree of orientational order, the correlation function will decay to a nonzero value.
This is illustrated in the following figures, which show C2(t) in the isotropic and nematic
phases.

A.7.3 Angular Velocity Autocorrelation Function

The angular velocity autocorrelation function is given by:

Cωω(t) = 〈~ω(0) · ~ω(t)〉

A Green-Kubo relation [17] allows us to extract the rotational diffusion constant from
Cωω:

DR =
1

2

∫ ∞
0

〈~ω(0) · ~ω(t)〉dt

We can define an autocorrelation function for each of the degrees of freedom in the body-
fixed frame [18]:

Cα
ωω(t) = 〈ωbα(0)ωbα(t)〉

Where α = x, y, z. Since the Gay-Berne molecules are axially symmetric, ωbz = 0, so
we only need to consider x and y. By symmetry, the autocorrelation functions in x and
y should be identical. With this correlation function in hand, we can define rotational
diffusion coefficients for the body fixed x and y:

Dα
R =

∫ ∞
0

〈ωbα(0)ωbα(t)〉 dt

Using the fact that the dot product is invariant to a change of basis, we can write the
overal rotational diffusion constant in terms of the body-fixed diffusion constants:

〈~ω(0) · ~ω(t)〉 = 〈ωbx(0)ωbx(t)〉+ 〈ωby(0)ωby(t)〉

=⇒ DR =
1

2
(Dx

R +Dy
R)

An aside: rotational diffusion coefficients are often calculated using the Debye model,
which assumes that the orientation vector takes a random walk, with small steps, on the
surface of a sphere. However, for nematic liquid crystals is assumption is untenable: the
orientation vectors spend most of their time on some small portion of the hypothetical
sphere (around the director) and presumably must make large-angle jumps to escape
from this region. Thus, we use the angular velocity autocorrelation function instead. For
further discussion on the breakdown of the Debye model, see Stillinger [18].
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Figure 29: Orientation autocorrelation function in the isotropic phase. The dashed line
is the square of the order parameter

Figure 30: Orientation autocorrelation function in the nematic phase. The dashed line
is the square of the order parameter.
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To actually calculate the components, ωbα, we need to transform the space-fixed vector
~ωs into the body-fixed frame. One straightforward way to do this is through Euler angles
([19]). We first rotate the vector through an angle φ about the z-axis: φ is the angle
though which the space-fixed x and y axes are rotated (about z) so that the space fixed
y axis lies at a 180 degree angle from the projection of the orientation vector onto the
original xy plane. This rotation is performed by multiplying ~ωs by the following rotation
matrix:  cosφ − sinφ 0

sinφ cosφ 0
0 0 1


Next, we rotate the angular velocity vector through an angle θ about the space-fixed
x-axis, where θ is the angle between the space-fixed z axis and the orientation vector.
This rotation is described by the matrix: 1 0 0

0 cos θ − sin θ
0 sin θ cos θ


One would expect that we would be done at this point. However, I found that it was
necessary to apply a third rotation, by the angle −φ about the body-fixed z axis, in
order for the rotational diffusion coefficients in x and y to have similar values (which
they ought to have.) This is due to the fact that the Gay-Berne molecules are linear and
hence symmetric with respect to rotation about the long molecular axis.

The rotational diffusion coefficients are shown below:

Isotropic Nematic
D∗xR ≈0.0560 D∗xR ≈0.00807
D∗yR ≈0.0575 D∗yR ≈0.00955
D∗R ≈0.0568 D∗R ≈ 0.00881

As can be seen, for a given phase, the rotational diffusion coefficients in x and y are
similar. Also, as expected, the rotational diffusion coefficients are smaller in the denser
and more ordered nematic phase than in the isotropic phase.

A.8 Derivation of Gay-Berne Forces and Auxiliary Torques

The calculation of the forces and auxiliary torques on a Gay-Berne molecule involves
taking derivatives of the Gay-Berne potential:

u(~r, Ω̂i, Ω̂j) = 4εν(Ω̂i, Ω̂j)ε
′µ(r̂, Ω̂i, Ω̂j)

×

( σ0

r − σ(r̂, Ω̂i, Ω̂j) + σ0

)12

−

(
σ0

r − σ(r̂, Ω̂i, Ω̂j) + σ0

)6
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Figure 31: Orientation autocorrelation function in the isotropic phase.

Figure 32: Orientation autocorrelation function in the nematic phase.
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Where:

ε(Ω̂i, Ω̂j) = ε0

[
1− χ2(Ω̂i · Ω̂j)

]−1/2

ε′(r̂, Ω̂i, Ω̂j) = 1− χ′

2

[
(r̂ · Ω̂i + r̂ · Ω̂j)

2

1 + χ′(Ω̂i · Ω̂j)
+

(r̂ · Ω̂i − r̂ · Ω̂j)
2

1− χ′(Ω̂i · Ω̂j)

]

σ(r̂, Ω̂i, Ω̂j) = σ0

(
1− χ

2

[
(r̂ · Ω̂i + r̂ · Ω̂j)

2

1 + χ(Ω̂i · Ω̂j)
+

(r̂ · Ω̂i − r̂ · Ω̂j)
2

1− χ(Ω̂i · Ω̂j)

])−1/2

For convenience, we shall also define:

R =
σ0

r − σ + σ0

The total potential of the system is the sum of the potential energy of the interaction
between each pair of molecules. Letting uij = u(~rij, Ω̂i, Ω̂j),

U =
∑
i

∑
j>i

uij

The force on the i-th molecule is given by:

~fi = −∂U
∂~ri

= −
∑
j 6=i

∂

∂~ri
uij = −

∑
j 6=i

~fij

Where ~fij is the force on molecule i due to molecule j. To get the µ-th component of
the force on i, , we need the derivative of uij with respect to the µ-th component of ~ri.
Following the suggestion of Allen and Germano [20], we can write the dependencies of u
in a more compuationally friendly form:

u(~r, Ω̂i, Ω̂j) = u(r, r̂ · Ω̂i, r̂ · Ω̂j, Ω̂i · Ω̂j)

We can now apply the chain rule. If we have a function f = f(x1(t), ..., xn(t)),

∂f

∂t
=

n∑
i=1

∂f

∂xi

∂xi
∂t

Thus, (
∂

∂~ri
uij

)
µ

=
∂u

∂r

∣∣∣∣
rij

∂rij
∂riµ

+
∂u

∂(r̂ · Ω̂i)

∣∣∣∣∣
rij

∂(r̂ · Ω̂i)

∂riµ

+
∂u

∂(r̂ · Ω̂j)

∣∣∣∣∣
rij

∂(r̂ · Ω̂j)

∂riµ
+

∂u

∂(Ω̂i · Ω̂j)

∣∣∣∣∣
rij

∂(Ω̂i · Ω̂j)

∂riµ
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For future reference, I will assign the derivatives of u in the above equation, in the order
in which they appear, the labels 1), 2), 3) 4). The last term in the above equation is
zero, since the orientations do not depend on r, so we have:(

∂

∂~ri
uij

)
µ

=
∂u

∂r

∣∣∣∣
rij

∂rij
∂riµ

+
∂u

∂(r̂ · Ω̂i)

∣∣∣∣∣
rij

∂(r̂ · Ω̂i)

∂riµ
+

∂u

∂(r̂ · Ω̂j)

∣∣∣∣∣
rij

∂(r̂ · Ω̂j)

∂riµ

We will first evaluate the derivatives that do not depend on u:

∂rij
∂riµ

=
∂

∂riµ

√∑
ν

(riν − rjν)2

=
1

rij
(riµ − rjµ)

∂(r̂ij · Ω̂i)

riµ
=

∂

∂riµ

(
~rij
rij
· Ω̂i

)
=

∂

∂riµ

(∑
ν

(riν − rjν)
rij

(Ω̂i)ν

)

=
∑
ν

(riν − rjν)(Ω̂i)ν
∂

∂riµ

(
1

rij

)
+

1

rij

∂

∂riµ
(riµ − rjµ)(Ω̂i)µ

= (~rij · Ω̂i)

(
− 1

r2
ij

)(
( ~rij)µ
rij

)
+

(Ω̂i)µ
rij

= −(r̂ij · Ω̂i)

(
(~rij)µ
r2
ij

)
+

(Ω̂i)µ
rij

∂(r̂ij · Ω̂j)

riµ
=

∂

∂riµ

(
~rij
rij
· Ω̂j

)
=

∂

∂riµ

(∑
ν

(riν − rjν)
rij

(Ω̂j)ν

)

=
∑
ν

(riν − rjν)(Ω̂j)ν
∂

∂riµ

(
1

rij

)
+

1

rij

∂

∂riµ
(riµ − rjµ)(Ω̂j)µ

= (~rij · Ω̂j)

(
− 1

r2
ij

)(
( ~rij)µ
rij

)
+

(Ω̂j)µ
rij

= −(r̂ij · Ω̂j)

(
(~rij)µ
r2
ij

)
+

(Ω̂j)µ
rij

We thus have an expression for ~fi for any potential of the form u(~r, Ω̂i, Ω̂j):
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(~fi)µ = −
∑
j 6=i

∂u

∂r

∣∣∣∣
rij

(~rij)µ
rij

+
∂u

∂(r̂ · Ω̂i)

∣∣∣∣∣
rij

[
(Ω̂i)µ
rij
− (~rij)µ(r̂ij · Ω̂i)

r2
ij

]

+
∂u

∂(r̂ · Ω̂j)

∣∣∣∣∣
rij

[
(Ω̂j)µ
rij
− (~rij)µ(r̂ij · Ω̂j)

r2
ij

]

Now we just need the derivatives of the Gay-Berne potential:

1)

∂u

∂r
=

∂

∂r

(
4ενε′µ

[
R12 −R6

])
= 4ενε′µ

∂

∂r

(
R12 −R6

)
= 4ενε′µ

(
12R11 − 6R5

) ∂
∂r
R

= 4ενε′µ
(
12R11 − 6R5

)(
− σ0

(r − σ + σ0)2

)
= 24ενε′µσ−1

0

(
R7 − 2R13

)

2)

∂u

∂(r̂ · Ω̂i)
=

∂

∂(r̂ · Ω̂i)

(
4ενε′µ

(
R12 −R6

))
= 4εν

∂

∂(r̂ · Ω̂i)

(
ε′µ
(
R12 −R6

))
= 4µενε′µ−1 ∂ε′

∂(r̂ · Ω̂i)

(
R12 −R6

)
+ 24ενε′µσ−1

0

(
2R13 −R7

) ∂σ

∂(r̂ · Ω̂i)
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Where:

∂ε′

∂(r̂ · Ω̂i)
=

∂

∂(r̂ · Ω̂i)

(
1− χ′

2

[
(r̂ · Ω̂i + r̂ · Ω̂j)

2

1 + χ′(Ω̂i · Ω̂j)
+

(r̂ · Ω̂i − r̂ · Ω̂j)
2

1− χ′(Ω̂i · Ω̂j)

])

= −χ
′

2

(
2(r̂ · Ω̂i + r̂ · Ω̂j)

1 + χ′(Ω̂i · Ω̂j)
+

2(r̂ · Ω̂i − r̂ · Ω̂j)

1− χ′(Ω̂i · Ω̂j)

)

= −χ′
(
r̂ · Ω̂i + r̂ · Ω̂j

1 + χ′(Ω̂i · Ω̂j)
+

r̂ · Ω̂i − r̂ · Ω̂j

1− χ′(Ω̂i · Ω̂j)

)

∂σ

∂(r̂ · Ω̂i)
=

∂

∂(r̂ · Ω̂i)

σ0

(
1− χ

2

[
(r̂ · Ω̂i + r̂ · Ω̂j)

2

1 + χ(Ω̂i · Ω̂j)
+

(r̂ · Ω̂i − r̂ · Ω̂j)
2

1− χ(Ω̂i · Ω̂j)

])−1/2


= −1

2
σ0

(
σ

σ0

)3
(
−χ

2

(
2(r̂ · Ω̂i + r̂ · Ω̂j)

1 + χ(Ω̂i · Ω̂j)
+

2(r̂ · Ω̂i − r̂ · Ω̂j)

1− χ(Ω̂i · Ω̂j)

))

=
χ

2

σ3

σ2
0

(
r̂ · Ω̂i + r̂ · Ω̂j

1 + χ(Ω̂i · Ω̂j)
+
r̂ · Ω̂i − r̂ · Ω̂j

1− χ(Ω̂i · Ω̂j)

)

3)

∂u

∂(r̂ · Ω̂j)
=

∂

∂(r̂ · Ω̂j)

(
4ενε′µ

(
R12 −R6

))
= 4εν

∂

∂(r̂ · Ω̂j)

(
ε′µ
(
R12 −R6

))
= 4µενε′µ−1 ∂ε′

∂(r̂ · Ω̂j)

(
R12 −R6

)
+ 24ενε′µσ−1

0

(
2R13 −R7

) ∂σ

∂(r̂ · Ω̂j)

Where:
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∂ε′

∂(r̂ · Ω̂j)
=

∂

∂(r̂ · Ω̂j)

(
1− χ′

2

[
(r̂ · Ω̂i + r̂ · Ω̂j)

2

1 + χ′(Ω̂i · Ω̂j)
+

(r̂ · Ω̂i − r̂ · Ω̂j)
2

1− χ′(Ω̂i · Ω̂j)

])

= −χ
′

2

(
2(r̂ · Ω̂i + r̂ · Ω̂j)

1 + χ′(Ω̂i · Ω̂j)
− 2(r̂ · Ω̂i − r̂ · Ω̂j)

1− χ′(Ω̂i · Ω̂j)

)

= −χ′
(
r̂ · Ω̂i + r̂ · Ω̂j

1 + χ′(Ω̂i · Ω̂j)
− r̂ · Ω̂i − r̂ · Ω̂j

1− χ′(Ω̂i · Ω̂j)

)

∂σ

∂(r̂ · Ω̂j)
=

∂

∂(r̂ · Ω̂j)

σ0

(
1− χ

2

[
(r̂ · Ω̂i + r̂ · Ω̂j)

2

1 + χ(Ω̂i · Ω̂j)
+

(r̂ · Ω̂i − r̂ · Ω̂j)
2

1− χ(Ω̂i · Ω̂j)

])−1/2


= −1

2

σ3

σ2
0

(
−χ

2

(
2(r̂ · Ω̂i + r̂ · Ω̂j)

1 + χ(Ω̂i · Ω̂j)
− 2(r̂ · Ω̂i − r̂ · Ω̂j)

1− χ(Ω̂i · Ω̂j)

))

=
χ

2

σ3

σ2
0

(
r̂ · Ω̂i + r̂ · Ω̂j

1 + χ(Ω̂i · Ω̂j)
− r̂ · Ω̂i − r̂ · Ω̂j

1− χ(Ω̂i · Ω̂j)

)
Thus, we have completely specified an arbitrary (Cartesian) component of the force on
any one Gay-Berne molecule due to all the other molecules.

Our next task is to calculate the torque. The torque on the ith molecule is given by:

~τi = Ω̂i × ~gi
The quantity ~gi is called the auxiliary torque on molecule i. It is a generalized force
(which comes from taking a derivative of the Lagrangian with respect to a generalized
coordinate) given by:

~gi = − ∂U
∂Ω̂i

= −
∑
j 6=i

∂

∂Ω̂i

uij = −
∑
j 6=i

~gij

where ~gij is the auxiliary torque on molecule i due to molecule j. We wish to calculate
the µth component of this gradient. Again, we will rewrite u:

u(~r, Ω̂i, Ω̂j) = u(r, r̂ · Ω̂i, r̂ · Ω̂j, Ω̂i · Ω̂j)

and apply the chain rule:

(
∂

∂Ω̂i

uij

)
µ

=
∂u

∂r

∣∣∣∣
rij

∂rij

∂(Ω̂i)µ
+

∂u

∂(r̂ · Ω̂i)

∣∣∣∣∣
rij

∂(r̂ · Ω̂i)

∂(Ω̂i)µ

+
∂u

∂(r̂ · Ω̂j)

∣∣∣∣∣
rij

∂(r̂ · Ω̂j)

∂(Ω̂i)µ
+

∂u

∂(Ω̂i · Ω̂j)

∣∣∣∣∣
rij

∂(Ω̂i · Ω̂j)

∂(Ω̂i)µ

The first and third terms of this expression are zero, since rij does not depend on the ori-
entations and since the orientation of the jth molecule does not depend on the orientation
of the ith molecule. So we have:

48



(
∂

∂Ω̂i

uij

)
µ

=
∂u

∂(r̂ · Ω̂i)

∣∣∣∣∣
rij

∂(r̂ · Ω̂i)

∂(Ω̂i)µ
+

∂u

∂(Ω̂i · Ω̂j)

∣∣∣∣∣
rij

∂(Ω̂i · Ω̂j)

∂(Ω̂i)µ

Let’s evaluate the derivatives that don’t depend on u:

∂(r̂ij · Ω̂i)

∂(Ω̂i)µ
=

∂

∂(Ω̂i)µ

1

rij

∑
ν

(riν − rjν)(Ω̂i)ν

=
riµ − rjµ

rij

= (r̂ij)µ

∂(Ω̂i · Ω̂j)

∂(Ω̂i)µ
=

∂

∂(Ω̂i)µ

∑
ν

(Ω̂i)ν(Ω̂j)ν

= (Ω̂j)µ

So,

(~gi)µ = −
∑
j 6=i

 ∂u

∂(r̂ · Ω̂i)

∣∣∣∣∣
rij

(r̂ij)µ +
∂u

∂(Ω̂i · Ω̂j)

∣∣∣∣∣
rij

(Ω̂j)µ



We calculated the derivative u that appears in the first term of the expression above pre-
viously, for the force calculation, so it remains to calculate the derivative which appears
in the second term:

4)

∂u

∂(Ω̂i · Ω̂j)
=

∂

∂(Ω̂i · Ω̂j)

(
4ενε′µ

(
R12 −R6

))
= 4

(
R12 −R6

) ∂

∂(Ω̂i · Ω̂j)
(ενε′µ) + 4ενε′µ

∂

∂(Ω̂i · Ω̂j)

(
R12 −R6

)
= 4

(
R12 −R6

)(
νεν−1ε′µ

∂ε

∂(Ω̂i · Ω̂j)
+ µενε′µ−1 ∂ε′

∂(Ω̂i · Ω̂j)

)
+ 24σ−1

0 ενε′µ
(
2R13 −R7

) ∂σ

∂(Ω̂i · Ω̂j)

Where:
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∂ε

∂(Ω̂j · Ω̂i)
=

∂

∂(Ω̂i · Ω̂j)
ε0

[
1− χ2(Ω̂i · Ω̂j)

2
]−1/2

= −ε0
2

[
1− χ2(Ω̂i · Ω̂j)

2
]−3/2 (

−2χ2(Ω̂i · Ω̂j)
)

= χ2 ε
3

ε20
(Ω̂i · Ω̂j)

∂ε′

∂(Ω̂i · Ω̂j)
=

∂

∂(Ω̂i · Ω̂j)

(
1− χ′

2

[
(r̂ · Ω̂i + r̂ · Ω̂j)

2

1 + χ′(Ω̂i · Ω̂j)
− (r̂ · Ω̂i − r̂ · Ω̂j)

2

1− χ′(Ω̂i · Ω̂j)

])

=
χ′2

2

( r̂ · Ω̂i + r̂ · Ω̂j

1 + χ′(Ω̂i · Ω̂j)

)2

−

(
r̂ · Ω̂i − r̂ · Ω̂j

1− χ′(Ω̂i · Ω̂j)

)2


∂σ

∂(Ω̂i · Ω̂j)
=

∂

∂(Ω̂i · Ω̂j)

σ0

(
1− χ

2

[
(r̂ · Ω̂i + r̂ · Ω̂j)

2

1 + χ(Ω̂i · Ω̂j)
+

(r̂ · Ω̂i − r̂ · Ω̂j)
2

1− χ(Ω̂i · Ω̂j)

])−1/2


= −1

2

σ3

σ2
0

∂

∂(Ω̂i · Ω̂j)

(
1− χ

2

[
(r̂ · Ω̂i + r̂ · Ω̂j)

2

1 + χ(Ω̂i · Ω̂j)
+

(r̂ · Ω̂i − r̂ · Ω̂j)
2

1− χ(Ω̂i · Ω̂j)

])

= −1

2

σ3

σ2
0

−χ2

2

−( r̂ · Ω̂i + r̂ · Ω̂j

1 + χ(Ω̂i · Ω̂j)

)2

+

(
r̂ · Ω̂i − r̂ · Ω̂j

1− χ(Ω̂i · Ω̂j)

)2


=
χ2

4

σ3

σ2
0

( r̂ · Ω̂i − r̂ · Ω̂j

1− χ(Ω̂i · Ω̂j)

)2

−

(
r̂ · Ω̂i + r̂ · Ω̂j

1 + χ(Ω̂i · Ω̂j)

)2


By Newton’s third law, the force on molecule i due to molecule j is the negative of the
force on j due to i. However, the auxiliary torques don’t work this way. To get the µth
component of the auxiliary torque on molecule j due to molecule i, we switch the indices
i and j in the equation for the auxiliary torque:

(~gji)µ =
∂u

∂(r̂ · Ω̂j)

∣∣∣∣∣
rij

(r̂ij)µ +
∂u

∂(Ω̂i · Ω̂j)

∣∣∣∣∣
rij

(Ω̂i)µ

We have thus completely specified the Gay-Berne forces and auxiliary torques.

A.9 Proof that the Q-tensor is Traceless

The Q-tensor is defined as:
↔
Q=

1

2N

N∑
i=1

(3Ω̂iΩ̂i − 1)

We wish to show that Tr
↔
Q = 0. Consider the diagonal elements of

↔
Q:

Qαα =
1

2N

N∑
i=1

(3(Ω̂i)α(Ω̂i)α − 1)
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To get the trace, we just sum over α:

Tr
↔
Q =

∑
α

Qαα

=
1

2N

N∑
i=1

∑
α

(3(Ω̂i)α(Ω̂i)α − 1)

=
1

2N

n∑
i=1

(
3
∑
α

((Ω̂i)α(Ω̂i)α)− 3

)

But
∑

α((Ω̂i)α(Ω̂i)α) is just Ω̂i · Ω̂i, which is 1. So,

Tr
↔
Q =

1

2N

N∑
i=1

(3(1)− 3)

= 0

A.10 Derivation of the Asymptotic Value of C2(t)

We wish to show that:

lim
t→∞
〈P2(Ω̂(0) · Ω̂(t))〉 = S2

Where S = 〈P2(cos θ)〉 = 〈P2(n̂ · Ω̂)〉. Do do this, first note that we can rewrite the
correlation function using the addition theorem for spherical harmonics:

〈P2(Ω̂(0) · Ω̂(t))〉 =

〈
4π

5

2∑
m=−2

Y m
2 (Ω̂(0)Y ∗m2 (Ω̂(t))

〉

=
4π

5

2∑
m=−2

〈Y m
2 (Ω̂(0))Y ∗m2 (Ω̂(t))〉

Now, using the fact that limt→∞〈A(0)B(t)〉 = 〈A〉〈B〉,

lim
t→∞
〈P2( ˆΩ(0) · Ω̂(t))〉 =

4π

5

2∑
m=−2

〈Y m
2 (Ω̂1)〉〈Y ∗m2 (Ω̂2)〉

We have let Ω̂(0) = Ω̂1, Ω̂(t) = Ω̂2 because these orientations are uncorrelated as t→∞.
Next, we can write out the ensemble averages in a director-fixed coordinate system, with
the director taken to be the z-axis:

〈Y m
2 (Ω̂1)〉 =

∫ 2π

0

∫ π
0
dφ1dθ1(−1)m

√
5

4π
(2−m)!
(2+m)!

sin θ1P
m
2 (cos θ1)eimφ1f(θ1, φ1)∫ 2π

0

∫ π
0
dφ1dθ1 sin θ1f(θ1, φ1)

〈Y ∗m2 (Ω̂2)〉 =

∫ 2π

0

∫ π
0
dφ2dθ2(−1)m

√
5

4π
(2−m)!
(2+m)!

sin θ2P
m
2 (cos θ2)e−imφ2f(θ2, φ2)∫ 2π

0

∫ π
0
dφ2dθ2 sin θ2f(θ2, φ2)
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Where θi = arccos (n̂ · Ω̂i). Now, we make the assumption that f(θi, φi) = f(θi). That
is, we assume that the distribution of orientation vectors along the azimuth is uniform.
Then we have:

〈Y m
2 (Ω̂1)〉 =

∫ 2π

0

∫ π
0
dφ1dθ1(−1)m

√
5

4π
(2−m)!
(2+m)!

sin θ1P
m
2 (cos θ1)eimφ1f(θ1)∫ 2π

0

∫ π
0
dφ1dθ1 sin θ1f(θ1)

〈Y ∗m2 (Ω̂2)〉 =

∫ 2π

0

∫ π
0
dφ2dθ2(−1)m

√
5

4π
(2−m)!
(2+m)!

sin θ2P
m
2 (cos θ2)e−imφ2f(θ2)∫ 2π

0

∫ π
0
dφ2dθ2 sin θ2f(θ2)

Let’s evaluate the φ integrals. We have:∫ 2π

0
dφie

±imφi∫ 2π

0
dφi

If m = 0, e±imφi = 1, so: ∫ 2π

0
dφi(1)∫ 2π

0
dφi

= 1

But if m 6= 0, ∫ 2π

0
dφie

±imφi∫ 2π

0
dφi

=
1

2π

1

(±im)
(e±imφi)

∣∣∣∣2π
0

=
1

2π

1

(±im)
(1− 1)

= 0

Thus, in the sum
∑2

m=−2〈Y m
2 (Ω̂1)〉〈Y ∗m2 (Ω̂2)〉, every term with m 6= 0 vanishes. So we

have:

lim
t→∞
〈P2(Ω̂(0) · Ω̂(t))〉 =

4π

5

∫ π0 dθ1

√
5

4π
sin θ1P

0
2 (cos θ1)f(θ1)∫ π

0
dθ1 sin θ1f(θ1)


×

∫ π0 dθ2

√
5

4π
sin θ2P

0
2 (cos θ2)f(θ2)∫ π

0
dθ2 sin θ2f(θ2)


Note that since Pm

l (x) = (−1)m(1−x2)m/2 dm

dxm
(Pl(x)), we have P 0

l (x) = Pl(x). Using this
fact, and moving the square root constants out of the integrals to cancel the prefactor,

lim
t→∞
〈P2(Ω̂(0) · Ω̂(t))〉 =

(∫ π
0
dθ1 sin θ1P2(cos θ1)f(θ1)∫ π

0
dθ1 sin θ1f(θ1)

)
×
(∫ π

0
dθ2 sin θ2P2(cos θ2)f(θ2)∫ π

0
dθ2 sin θ2f(θ2)

)
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The terms being multiplied are just ensemble averages of P (cos θi):

lim
t→∞
〈P2(Ω̂(0) · Ω̂(t))〉 = 〈P2(cos θ1)〉〈P2(cos θ2)〉

But θi is just the angle between the director and the orientation vector of some molecule,
and the ensemble average 〈P2(cos θi)〉 should be the same regardless of the choice of Ω̂i.
So we can write, for some orientation vector Ω̂ and angle θ = n̂ · Ω̂,

lim
t→∞
〈P2(Ω̂(0) · Ω̂(t))〉 = 〈P2(cos θ)〉2 = S2

B Efficacy of Monte Carlo Optimization

One measure of the efficacy of the Monte Carlo optimization is the ratio of the unopti-
mized to optimized total path lengths. A plot of this ratio for different values of endpoint
separation is shown in Fig. 33. The closer the value of this ratio to 1, of course, the
less the paths lengths were shortened by optimization. As the plot shows, optimization
changed this ratio very little.

Figure 33: Ratio of unoptimized to optimized total geodesic path length.

We also considered the number of MC trials that failed to successfully locate a path,
and the number of successfully-found paths that resulted in an acceptance move (i.e.,
were shorter than the current shortest path.) The results for different values of endpoint
separation are shown in the table below. As can be seen, as the endpoint separation
increases, more trials fail to locate paths, and fewer paths result in acceptance moves.
The geodesics at large ∆R̃ are thus not very well-optimized.
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endpoint separation (σ0) failed trials, isotropic acceptance moves, isotropic
25 0.000 4.641
50 0.224 2.661
100 1.516 1.210
150 2.526 0.842
300 3.510 0.608
500 3.917 0.367

endpoint separation (σ0) failed trials, nematic acceptance moves, nematic
25 0.000 4.785
50 0.569 1.828
100 2.655 0.793
150 4.758 0.452
300 6.615 0.393
500 6.432 0.309

Table 1: Average number of failed trials and acceptance moves versus endpoint separation,
out of 10 trials per geodesic. The averages are taken over the numbers endpoint pairs
indicated in Chapter 5.2 of this thesis.

C Derivation of Rotational Diffusion Green’s Func-

tion

We wish to come up with a “classical” expression for the rotational diffusion Green’s
function - that is, one which can be written in terms of integrals rather than sums. The
rotational diffusion equation is given by [21]:

∂G

∂t
= DR∇2G

where G = G(Ω̂i → Ω̂f , t), DR is the rotational diffusion constant, and ∇2 is the angular
part of the Laplacian in spherical coordinates:

∇2 =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

The solution to this equation is given by [21]:

G(Ω̂i → Ω̂f , t) =
∞∑
l=0

2l + 1

4π
Pl(Ω̂i · Ω̂f )e

−l(l+1)DRt

Where Pl is the l-th order Legendre polynomial, and Ω̂i · Ω̂f = cos θ. For a short time
step (δt), this is:

G(Ω̂t → Ω̂t+δt, δt) =
∞∑
l=0

2l + 1

4π
Pl(Ω̂t · Ω̂t+δt)e

−l(l+1)DRδt
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To start, let us examine Pl for short times. We know that for short times, x ≡ Ω̂t ·Ω̂t+δt ≈
1. Taylor expanding Pl(x) about x = 1,

Pl(x) = 1 +
l(l + 1)

2
(x− 1) +O(x− 1)2

= 1− l(l + 1)

2
(1− x) +O(1− x)2

since ([22]) P ′l (x = 1) = l(l + 1)/2. We also know that 1 − Ω̂t · Ω̂t+δt = (Ω̂t+δt − Ω̂t)
2/2.

Substituting this fact into the above expression for Pl, and substituting that into the
expression for the Green’s function, we obtain:

G(Ω̂t → Ω̂t+δt, δt) =
1

4π

∞∑
l=0

(2l + 1)

[
1− l(l + 1)

4
(Ω̂t+δt − Ω̂t)

2 + . . .

]
e−l(l+1)DRδt

Now we make the classical approximation that DRδt is small. This allows us to write the
sum over the angular momentum “quantum number” as an integral:

G(Ω̂t → Ω̂t+δt, δt) ≈
1

4π

∫ ∞
0

dx
[
1− x

4
(Ω̂t+δt − Ω̂t)

2 + . . .
]
e−xDRδt

where:

x = l(l + 1)
∞∑
l=0

(2l + 1)f [l(l + 1)]→
∫ ∞

0

dxf(x)

Note the similarity of this approximation to that of the classical limit of the quantum
mechanical partition function of the rigid rotor [23]. Now the integral in the Green’s
function is easily evaluated. Using the facts that:∫ ∞

0

e−αxdx =
1

α∫ ∞
0

xe−αxdx = − d

dα

(
1

α

)
=

1

α2

(where α = DRδt), we have:

G(Ω̂t → Ω̂t+δt, δt) =
1

4πDRδt
− 1

4π

(Ω̂t+δt − Ω̂t)
2

4

1

(DRδt)2
+ . . .

=
1

4πDRδt

[
1− (Ω̂t+δt − Ω̂t)

2

4DRδt
+ . . .

]

=
1

4πDRδt
exp

[
−(Ω̂t+δt − Ω̂t)

2

4DRδt
+ . . .

]
Neglecting higher-order terms, the exponent can be written as:

− 1

4DR

(Ω̂t+δt − Ω̂t)
2

(δt)2
δt
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Our short-time Green’s function is then:

G(Ω̂t → Ω̂t+δt, δt) =
1

4πDRδt
exp

− 1

4DR

(
Ω̂t+δt − Ω̂t

δt

)2

δt


Now, we really want to find an expression for the finite-time rotational diffusion Green’s
function. Say that we want to find the Green’s function for diffusing from Ω̂i to Ω̂f in
a time t. Let us divide the time interval into P parts, so that t = Pδt. Then, following
[24], the finite-time Green’s function can be written in terms of the product of short-time
Green’s functions:

G(Ω̂i → Ω̂f , t) =

∫
dΩ̂1 · · ·

∫
dΩ̂P−1

(
1

4πDRδt

)P+1

exp

− 1

4DR

P−1∑
k=0

(
Ω̂k+1 − Ω̂k

δt

)2

δt


Taking the limit as P →∞, δt→ 0, the integrals over the Ω̂k become a path integral, the
sum in the exponential becomes a time integral, and the ratio (Ω̂k+1− Ω̂k)/δt becomes a
derivative dΩ̂/dτ , yielding:

G(Ω̂i → Ω̂f , t) =

∫ Ω̂f ,t

Ω̂i,0

D[Ω̂(τ)] exp

− 1

4DR

∫ t

0

(
dΩ̂

dτ

)2

dτ


where the normalization has been absorbed into the path integral measure D.

D Derivation of Rotational Diffusion Constant in terms

of Geodesic Length

To derive an expression for the rotational diffusion constant in terms of the rotational
geodesic length, we compare two equivalent expressions for the rotational diffusion Green’s
function. One expression involves the phenomenological rotational diffusion constant.
From the previous section, we know that, if we make the “classical” approximation that
DR is small, we can write the rotational diffusion Green’s function as:

G(Ω̂i → Ω̂f , t) =
1

4πDRt
exp

[
− 1

4DR

(Ω̂f − Ω̂i)
2

t

]

=
1

4πDRt
exp

[
−2(1− cos ∆ψ)

4DRt

]
=

1

4πDRt
exp

[
−

2(1
2
(∆ψ)2 + · · · )

4DRt

]
=

1

4πDRt
exp

[
−(∆ψ)2 + · · ·

4DRt

]
But we also know that in the slow diffusion limit, the path that dominates the path-
integral expression for the Green’s function is going to be the geodesic. Thus we want
to find a way to write the integral in the Green’s function exponential in terms of the
geodesic length. We do this by considering a simple, prototypical case. Consider the
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rotational diffusion of an linear molecule of length 2
√
I/m around a circular obstacle,

as shown in Fig. 34. The geodesic path from point 1 to point 2 can be broken into two
separate components: free motion and motion along the boundary of the obstacle.

Free Motion
Let us consider evaluating the action integral for the free segments of the path. We know
that the molecule’s orientation vector’s path can be written as a SLERP (spherical linear
interpolation) formula [1]:

Ω̂(τ) = Ω̂(0)
sin ∆ψ(1− τ/t)

sin ∆ψ
+ Ω̂(t)

sin ∆ψ(τ/t)

sin ∆ψ

0 ≤ τ ≤ t

where Ω̂(0) · Ω̂(t) = cos ∆ψ. The time derivative of Ω̂ is:

dΩ̂(τ)

dτ
=

∆ψ

t

[
−Ω̂(0)

cos ∆ψ(1− τ/t)
sin ∆ψ

+ Ω̂(t)
cos ∆ψ(τ/t)

sin ∆ψ

]
Now we can evaluate the square of the derivative. To clean things up a bit, let:

sin ∆ψ = s cos ∆ψ = c

sin ∆ψ(τ/t) = S cos ∆ψ(τ/t) = C

Using this notation and the fact that cos(α− β) = cosα cos β + sinα sin β, we can write
the derivative as:

dΩ̂(τ)

dτ
=

∆ψ

ts

[
−Ω̂(0)(cC + sS) + CΩ̂(τ)

]
Taking the square,(

dΩ̂(τ)

dτ

)2

=
(∆ψ)2

t2s2

[
(cC + sS)2 + C2 − 2cC(cC + sS)

]
=

(∆ψ)2

t2s2

[
c2C2 + s2S2 + 2cCsS + C2 − 2c2C2 − 2cCsS

]
=

(∆ψ)2

t2s2

[
s2S2 − c2C2 + C2

]
=

(∆ψ)2

t2s2

[
sS2 + C2(1− c2)

]
=

(∆ψ)2

t2s2

[
s2(S2 + C2)

]
=

(∆ψ)2

t2s2
(s2)

=

(
∆ψ

t

)2

Now we can perform the action integral:

1

4DR

∫ t

0

(
dΩ̂

dτ

)2

dτ =
1

4DR

∫ t

0

(∆ψ/t)2dτ =
(∆ψ)2

4DRt
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Figure 34: The motion of the linear molecule consists of free motion (i→ 1 and 2→ f)
and motion along the boundary (1→ 2).

Figure 35: Motion of the linear molecule along the boundary. From the diagram, ρ =√
I/m sin θ0.
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Now, note that the free segment geodesic is just the arc length traversed by the molecule,
g = ∆ψ

√
I/m. Solving for ∆ψ and plugging into the above expression, we obtain:

1

4DR

∫ t

0

(
dΩ̂

dτ

)2

dτ =
g2

4(I/m)DRt

Motion Along Boundary
We assume that the molecule travels by an azimuthal angle ∆φ along the boundary, at
a constant polar angle (relative to a vector “normal” to the circular boundary) of θ0, as
shown in Fig. 35. Then we have:

Ω̂(τ) =

sin θ0 cosφ(τ)
sin θ0 sinφ(τ)

cos θ0


φ(τ) = φ1 + (τ/t)∆φ

Thus,

dΩ̂

dτ
=

− sinφ(t)
cosφ(t)

0

 sin θ0
dφ

dτ

dφ

dτ
=

∆φ

t

And so, (
dΩ̂

dτ

)2

= (sin2 φ+ cos2 φ) sin2 θ0(∆φ/t)2

= sin2 θ0(∆φ/t)2

Now, the geodesic length is just the arc length traced out on the circular boundary,
g = ρ∆ψ =

√
I/m sin θ0∆ψ. Thus,

sin2 θ0 =
g2

(I/m)(∆φ)2

Finally, then, the action integral is:

1

4DR

∫ t

0

(
dΩ̂

dτ

)2

dτ =
g2

4(I/m)DRt

So the value of the action integral along the boundary is the same as that along the free
segments.

Now, for this geodesic, the rotational diffusion constant is not the “true,” phenomeno-
logical diffusion constant, but rather a “bare” diffusion constant - what the phenomeno-
logical diffusion constant would be in the low-density (essentially free motion) limit. Let
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us denote this “reference” diffusion constant D
(0)
R . Equating the exponentials for the two

different Green’s function expressions, we have:

g2

4(I/m)D
(0)
R t

=
(∆ψ)2

4DRt

From which we finally obtain an expression for the rotational diffusion constant, relative
to a reference constant, in terms of the rotational geodesic length:

DR

D
(0)
R

=
I
m

(∆ψ)2

g2

E Derivation of of Equilibrium Predictions of Geodesic

Length Ratios

E.1 lT/lR

We know that l ∼
√
K, where K is the kinetic energy. By the equipartition theorem [23],

for a linear molecule, the translational kinetic energy is 3
2
kBT and the rotational kinetic

energy is kBT . Thus,

lT
lR

=

√
3
2
kBT

kBT

=

√
3

2

E.2 lzb/lxb,yb

Since zb is one degree of freedom, it is associated with a kinetic energy of 1
2
kBT , and

xb, yb together possess a kinetic energy of kBT . Thus the contour length ratio is:

lzb
lxb,yb

=

√
1
2
kBT

kBT

=
1√
2

E.3 lR||n̂/lR⊥n̂

This derivation is less straightforward than for the previous ratios. To start, we need
to compute the rotational partition function. The rotational Hamiltonian for a linear
molecule is:

H =
1

2I

(
p2
θ +

p2
φ

sin2 θ

)
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We define the partition function to be:

Q =

∫ ∞
−∞

∫ ∞
−∞

∫ π

0

∫ 2π

0

dpθ dpφ dθ dφ e
−βH

=

∫ ∞
−∞

∫ ∞
−∞

∫ π

0

∫ 2π

0

dpθ dpφ dθ dφ e
− β

2I

(
p2θ+

p2φ

sin2 θ

)

The φ integration is trivial, just yielding a factor of 2π. Next we perform the pθ and pφ
integrals, which are just Gaussian integrals:

Q = 2π

∫ ∞
−∞

∫ ∞
−∞

∫ π

0

dpθ dpφ dθe
− β

2I

(
p2θ+

p2φ

sin2 θ

)

= 2π

√
π

β/(2I)

∫ π

0

√
π

β/(2I sin2 θ)

= 2π

(
2πI

β

)∫ π

0

sin θdθ

And finally the theta integral:

Q =
4π2I

β
(− cos θ)|π0

=
8π2I

β

Ultimately, we wish to compute the average rotational kinetic energy parallel and per-
pendicular to the director. Let’s start by computing the total average rotational kinetic
energy, K. This can be obtained as a logarithmic derivative of the partition function:

〈K〉 = − ∂

∂β
lnQ

= − ∂

∂β
ln

8π2I

β

= − ∂

∂β

(
ln 8π2I − ln β

)
=

1

β

This is just what we expect from the equipartition theorem; a linear molecule has two
rotational degrees of freedom, and so it ought it to have a rotational kinetic energy of
2(1

2
kBT ) = kBT = β−1.

To decompose the rotational kinetic energy into components parallel and perpendic-
ular to the director (or some arbitrary axis, generally), note that we can rewrite the
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rotational kinetic energy as:

〈K〉 =

〈
1

2
I
dΩ̂

dt
· dΩ̂

dt

〉

=
1

2
I

〈
dΩ̂

dt
· 1 · dΩ̂

dt

〉

=
1

2
I

〈
dΩ̂

dt
· [(1− n̂n̂) + (n̂n̂)] · dΩ̂

dt

〉

=
1

2
I

〈
dΩ̂

dt
· (1− n̂n̂) · dΩ̂

dt

〉
+

1

2
I

〈
dΩ̂

dt
· n̂n̂ · dΩ̂

dt

〉
= 〈K⊥n̂〉+ 〈K||n̂〉

In general, we can write an arbitrary unit vector on a sphere, n̂, as:

n̂ =

sin θ cosφ
sin θ sinφ

cos θ


The n̂n̂ dyad is then:

n̂n̂ =

 sin2 θ cos2 φ sin2 θ cosφ sinφ sin θ cos θ cosφ
sin2 θ cosφ sinφ sin2 θ sin2 φ sin θ cos θ sinφ
sin θ cos θ cosφ sin θ cos θ sinφ cos2 θ


In the isotropic phase, since the choice of axis is immaterial, the dyad can be replaced by
its average:

〈n̂n̂〉iso =

 〈sin2 θ cos2 φ〉 〈sin2 θ cosφ sinφ〉 〈sin θ cos θ cosφ〉
〈sin2 θ cosφ sinφ〉 〈sin2 θ sin2 φ〉 〈sin θ cos θ sinφ〉
〈sin θ cos θ cosφ〉 〈sin θ cos θ sinφ〉 〈cos2 θ〉


The off-diagonal elements are all zero, since:∫ 2π

0

sinφdφ = − cosφ|2π0 = 0∫ 2π

0

cosφdφ = sinφ|2π0 = 0

Now for the diagonal elements:

〈sin2 θ cos2 φ〉 =
1

4π

∫ π

0

dθ

∫ 2π

0

dφ sin3 θ cos2 φ

=
1

4π

∫ π

0

sin3 θ dθ

∫ 2π

0

cos2 φ dφ
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First the theta integral: ∫ π

0

sin3 θdθ =

∫ π

0

sin θ(1− cos2 θ)dθ

=

∫ 1

−1

1− u2du

= (u− 1

3
u3)|1−1

=
2

3
− (−1 +

1

3
)

=
4

3

Now the phi integral: ∫ 2π

0

cos2 φ dφ =
1

2

∫ 2π

0

1 + cos 2φ dφ

=
1

2
(φ+

1

2
sin 2φ)|2π0

= π

Thus our average is:

〈sin2 θ cos2 φ〉 =
4π/3

4π
=

1

3

Similarly, the second diagonal element is:

〈sin2 θ sin2 φ〉 =
1

4π

∫ π

0

sin3 θ dθ

∫ 2π

0

sin2 φ dφ

=
1

4π

(
4

3

)
(π)

=
1

3

And the last diagonal element:

〈cos2 θ〉 =
1

2

∫ π

0

cos3 θdθ

=
1

3

So each diagonal element is 1/3:

〈n̂n̂〉iso =
1

3
1
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With this in hand, it is easy to compute the kinetic energy components:

〈K||n̂〉 =
1

2
I

〈
dΩ̂

dt
· 〈n̂n̂〉iso ·

dΩ̂

dt

〉

=
1

2
I

〈
dΩ̂

dt
·
(

1

3
1

)
· dΩ̂

dt

〉

=
1

3

(
1

2
I

〈
dΩ̂

dt
· 1 · dΩ̂

dt

〉)

=
1

3

(
1

2
I

〈
dΩ̂

dt
· dΩ̂

dt

〉)
=

1

3
〈K〉

=
1

3
kBT

And similarly,

〈K⊥n̂〉 =
1

2
I

〈
dΩ̂

dt
· (1− 〈n̂n̂〉iso) ·

dΩ̂

dt

〉

=
1

2
I

〈
dΩ̂

dt
·
(

2

3
1

)
· dΩ̂

dt

〉
=

2

3
〈K〉

=
2

3
kBT

This result makes sense. It takes three basis vectors to describe 3d space; if the sys-
tem is isotropic, then if we pick a single arbitrary axis in 3d space, a third of the average
kinetic energy will be in that direction.

Since the contour length goes as
√
K, the ratio lR||n̂/lR⊥n̂ in the isotropic phase is

given by:

lR||n̂
lR⊥n̂

=

√
K||n̂
K⊥n̂

=

√
kBT/3

2kBT/3
=

1√
2

Now for the nematic phase. First, we shall express K||n̂ and K⊥n̂ in terms of momenta
and coordinates. Pick a coordinate system in which n̂ = ẑ. We can write:
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Ω̂ =

sin θ cosφ
sin θ sinφ

cos θ


dΩ̂

dt
=

θ̇ cos θ cosφ− φ̇ sin θ sinφ

θ̇ cos θ sinφ+ φ̇ sin θ cosφ

−θ̇ sin θ


We can express the parallel kinetic energy as:

K||n̂ =
1

2
I
dΩ̂

dt
· ẑẑ · dΩ̂

dt

=
1

2
Iθ̇2 sin2 θ

=
p2
θ sin2 θ

2I

Since the total rotational kinetic energy is K = 1
2
I(θ̇2 + φ̇2 sin2 θ) = K||n̂ +K⊥n̂,

K⊥n̂ =
1

2
I(θ̇2 + φ̇2 sin2 θ)− 1

2
Iθ̇2 sin2 θ

=
1

2
I(θ̇2 cos2 θ + φ̇2 sin2 θ)

=
1

2I

(
p2
θ cos2 θ +

p2
φ

sin2 θ

)
To obtain an average of the kinetic energy, we need a Hamiltonian; for the nematic phase,
we will need to include an effective potential in the Hamiltonian. We assume a mean-field
potential of the form:

U = −α(n̂ · Ω̂)2 = −α cos2 θ

where α is a parameter that depends on the order parameter. (Up to normalization, this
is the Maier-Saupe potential [25].) We can now write down the partition function for the
nematic phase:

Q =

∫ ∞
−∞

∫ ∞
−∞

∫ π

0

∫ 2π

0

dpθdpφdθdφ e
−βH

H = K + U =
1

2I

(
p2
θ +

p2
φ

sin2 θ

)
− α cos2 θ

Performing the (trivial) phi integral and the Gaussian momentum integrals,

Q =
4π2I

β

∫ π

0

dθ sin θ eβα cos2 θ

=
4π2I

β

∫ 1

−1

du eβαu
2
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The integral in the above expression is known as Dawson’s integral [26]. Now we can
calculate the average kinetic energies:

〈K||n̂〉 =
2π

Q

∫ ∞
−∞

∫ ∞
−∞

∫ π

0

dpθdpφdθ

(
p2
θ sin2 θ

2I

)
e−βH

=
2π2I

β2

1

Q

∫ π

0

dθ sin3 θ eβα cos2 θ

=
2π2I

β2

1

Q

∫ π

0

dθ sin θ(1− cos2 θ) eβα cos2 θ

=
1

2β

∫ 1

−1
du (1− u2)eβαu

2∫ 1

−1
du eβαu2

=
1

2β

(
1−

∫ 1

−1
du u2eβαu

2∫ 1

−1
du eβαu2

)

But the second term is just an average of u2 = cos2 θ = (n̂ · Ω̂)2 with respect to the
distribution:

P (Ω̂) =
eβα(n̂·Ω̂)2∫
dΩ̂ eβα(n̂·Ω̂)2

And an average with respect to this distribution is equivalent to an average with respect
to the phase space distribution, at least for an observable that depends only on theta.
To see this, take the phase space average of an observable A(θ):

〈A〉 =

∫∞
−∞

∫∞
−∞

∫ π
0

∫ 2π

0
dpθ dpφ dθ dφA(θ) e

−β
(
p2θ
2I

+
p2φ

2I sin2 θ
−α cos2 θ

)

∫∞
−∞

∫∞
−∞

∫ π
0

∫ 2π

0
dpθ dpφ dθ dφ e

−β
(
p2
θ

2I
+

p2
φ

2I sin2 θ
−α cos2 θ

)

=

4π2I
β

∫ 2π

0
dφ
∫ π

0
dθ sin θ A(θ) eβα cos2 θ

4π2I
β

∫ 2π

0
dφ
∫ π

0
dθ sin θ eβα cos2 θ

=

∫ 2π

0
dφ
∫ π

0
dθ sin θ A(θ) eβα cos2 θ∫ 2π

0
dφ
∫ π

0
dθ sin θ eβα cos2 θ

=

∫
dΩ̂A(θ)eβα(n̂·Ω̂)2∫
dΩ̂ eβα(n̂·Ω̂)2

So we have:

〈K||n̂〉 =
1

2β
(1− 〈(n̂ · Ω̂)2〉)
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But recalling the definition of the order parameter,

S =

〈
3(n̂ · Ω̂)2 − 1

2

〉

Rearranging,

〈(n̂ · Ω̂)2〉 =
2S + 1

3

Plugging this into the formula for the kinetic energy,

〈K||n̂〉 =
1

2β

(
1−

(
2S + 1

3

))
=

1

2β

(
2(1− S)

3

)
= kBT

(
1− S

3

)
The kinetic energy perpendicular to the director is then given by:

〈K⊥n̂〉 = 〈K〉 − 〈K||n̂〉

= kBT − kBT
(

1− S
3

)
= kBT

(
3− (1− S)

3

)
= kBT

(
2 + S

3

)
Finally, we obtain the contour length ratio:

lR||n̂
lR⊥n̂

=

√
〈K||n̂〉
〈K⊥n̂〉

=

√
1− S
2 + S

Notice that we never had to use the fact that the distribution has a Gaussian form - all
of the results hold assuming only that the mean-field potential has a form U(n̂ · Ω̂) such
that 〈(n̂ · Ω̂)2〉 = (2S + 1)/3.
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