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1 Translational Diffusion

One convenient expression for the translational diffusion constant in the
isotropic phase is a Green-Kubo relation:

D= > / T (5(0) - 5.(0)) de

Using this formula, we can just numerically integrate the velocity autocorre-
lation function to get the diffusion coefficient.

In the nematic phase, where there is a preferred direction of alignment, we
have a diffusion tensor which, when diagonalized, has two distinct compo-
nents. These components, parallel and perpendicular to the director of the
phase, are also given by Green-Kubo expressions:

Dl = ?%NZ/OOO@(O) - (1)) dt

D - BLN;/OOO@@ (1 - a) - B(0) di

Here, nn is the director dyad and 1 is the unit tensor. For a nematic phase
with T* ~ 1.00, p* = 0.34, I calculated:

D*I' ~ 0.0333
D*+ ~0.0180

So, Gay-Berne molecules seem to be able to diffuse farther parallel to the
director than perpendicular to the director.
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2 Rotational Diffusion

One commonly used model for understanding rotational diffusion is the De-
bye model. In this model, a unit vector, describing the orientation of a
molecule, diffuses on the surface of a sphere. The vector is assumed to take
a random walk with small steps. We can write down a diffusion equation for
this situation:
VEP(y,t) = DR—aPW’ )
ot

Here, P(1,t) is the probability of diffusing an angle ¢ away from the initial
orientation in a time ¢, and Dp is the rotational diffusion coefficient. Solving
this equation, subject to the condition that the unit vector is contrained to
move on the surface of a sphere, yields the following expression for P(1),t):

P(y,t) =) (21%1) P,(cos ib)e(+D Pt
=0

Where Pj(cos ) is the (unassociated) [th order Legendre polynomial in cos .
Now, to find Dg, we consider the [th order reorientational time correlation
function:

1 N

€)= 5 S UB0) - (1)
i=1
Where we can identify €;(0) - €;(t) = cost);. In the Debye approximation,
this function assumes a simple form:

Cl (t) _ e—l(l-i-l)DRt

We can then define a correlation time:
= / C'(t) dt
0

From which we can obtain the rotational diffusion coefficient:

1
Dp=——
B0+ D)7

Unfortunately, we cannot assume that the orientation vectors of molecules in
the nematic phase are performing a random walk with short steps. The ori-
entation vectors have a preferred direction of alignment (the director), and
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so will spend most of their time near the director. Large deviations from
alignment with the director will likely require large-angle “jumps.” Thus,
we cannot use the Debye approximation to calculate rotational diffusion co-
efficients in the nematic phase. An alternative is to calculate the rotational
diffusion coefficient using mean-squared angular displacements:

N

o __ 13 1 « 2
Dy = lim 5N 2 ([Api()]7)

t
D) = otlt) — 50) = [ wi
0

Where D¢ is the rotational diffusion coefficient in the ath direction (relative
to the molecules), and w;' * is the ath component of the angular velocity
of the ith molecule, expressed in the body-fixed (b) frame. By subsituting
the definition of Apg(t) into the expression for Dy (and performing a few
manipulations), we arrive at a Green-Kubo expression for D%:

N
1 [o¢]
Di=y 3 [ oo
=1

In the nematic phase, T =~ 1.00, p* = 0.34, I obtained:

a2 0.0129
DY, ~ 0.0151

These values are close, but not quite the same. I intend to determine whether
this is due to numerical integration error, or whether it is actually a feature
of the nematic phase.



