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1 Translational Diffusion

One convenient expression for the translational diffusion constant in the
isotropic phase is a Green-Kubo relation:

D =
1

3N

N∑
i=1

∫ ∞
0

〈~vi(0) · ~vi(t)〉 dt

Using this formula, we can just numerically integrate the velocity autocorre-
lation function to get the diffusion coefficient.

In the nematic phase, where there is a preferred direction of alignment, we
have a diffusion tensor which, when diagonalized, has two distinct compo-
nents. These components, parallel and perpendicular to the director of the
phase, are also given by Green-Kubo expressions:

D‖ =
1

3N

N∑
i=1

∫ ∞
0

〈~vi(0) · n̂n̂ · ~vi(t)〉 dt

D⊥ =
1

3N

N∑
i=1

∫ ∞
0

〈~vi(0) · (1− n̂n̂) · ~vi(t)〉 dt

Here, n̂n̂ is the director dyad and 1 is the unit tensor. For a nematic phase
with T ∗ ≈ 1.00, ρ∗ = 0.34, I calculated:

D∗‖ ≈ 0.0333

D∗⊥ ≈ 0.0180

So, Gay-Berne molecules seem to be able to diffuse farther parallel to the
director than perpendicular to the director.
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2 Rotational Diffusion

One commonly used model for understanding rotational diffusion is the De-
bye model. In this model, a unit vector, describing the orientation of a
molecule, diffuses on the surface of a sphere. The vector is assumed to take
a random walk with small steps. We can write down a diffusion equation for
this situation:

∇2P (ψ, t) = DR
∂P (ψ, t)

∂t

Here, P (ψ, t) is the probability of diffusing an angle ψ away from the initial
orientation in a time t, and DR is the rotational diffusion coefficient. Solving
this equation, subject to the condition that the unit vector is contrained to
move on the surface of a sphere, yields the following expression for P (ψ, t):

P (ψ, t) =
∞∑
l=0

(
2l + 1

2

)
Pl(cosψ)e−l(l+1)DRt

Where Pl(cosψ) is the (unassociated) lth order Legendre polynomial in cosψ.
Now, to find DR, we consider the lth order reorientational time correlation
function:

C l(t) =
1

N

N∑
i=1

〈Pl(Ω̂i(0) · Ω̂i(t))〉

Where we can identify Ω̂i(0) · Ω̂i(t) = cosψi. In the Debye approximation,
this function assumes a simple form:

C l(t) = e−l(l+1)DRt

We can then define a correlation time:

τl =

∫ ∞
0

C l(t) dt

From which we can obtain the rotational diffusion coefficient:

DR =
1

l(l + 1)τl

Unfortunately, we cannot assume that the orientation vectors of molecules in
the nematic phase are performing a random walk with short steps. The ori-
entation vectors have a preferred direction of alignment (the director), and
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so will spend most of their time near the director. Large deviations from
alignment with the director will likely require large-angle “jumps.” Thus,
we cannot use the Debye approximation to calculate rotational diffusion co-
efficients in the nematic phase. An alternative is to calculate the rotational
diffusion coefficient using mean-squared angular displacements:

Dα
R = lim

t→∞

1

2tN

N∑
i=1

〈[∆ϕαi (t)]2〉

∆ϕαi (t) = ϕαi (t)− ϕαi (0) =

∫ t

0

ωα,bi dt

Where Dα
R is the rotational diffusion coefficient in the αth direction (relative

to the molecules), and ωα,bi is the αth component of the angular velocity
of the ith molecule, expressed in the body-fixed (b) frame. By subsituting
the definition of ∆ϕαi (t) into the expression for DR (and performing a few
manipulations), we arrive at a Green-Kubo expression for Dα

R:

Dα
R =

1

N

N∑
i=1

∫ ∞
0

〈ωα,bi (t)ωα,bi (0)〉 dt

In the nematic phase, T ∗ ≈ 1.00, ρ∗ = 0.34, I obtained:

Dx
R ≈ 0.0129

Dy
R ≈ 0.0151

These values are close, but not quite the same. I intend to determine whether
this is due to numerical integration error, or whether it is actually a feature
of the nematic phase.
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