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Abstract

The equation for escape steps (3.3) in Wang and Stratt’s 2007 paper treating geodesics in
the potential energy landscape ensemble [1] erroneously introduces center of mass translation
in systems with heterogeneous masses. I explore the ramifications of this and propose a modest
correction to their equation.

1 Notation
In the analysis of molecular systems with N atoms in d spatial dimensions, it is sometimes
desirable to picture the system as specified by a single vector in the Nd-dimensional configu-
ration space and at other times asN spatial vectors. I use the following definitions to transition
between representations.

• Let R˜ ∈ RdN be the column vector representing the total configuration of the system.

• Let ~xα ∈ Rd be the column vector specifying the spatial coordinates of the αth atom.

• Let mα be the mass of the αth component.

We can extract spatial vectors from the configuration space vector by defining the d× dN
matrix, ~C˜α such that

~xα = ~C˜α ·R˜ . (1)

For instance, in 3 spatial dimensions,

~C˜1
=

1
1

1 . . .

 .

In general, (
~C˜α
)
1,β

= δα,β~1 , β = 1 . . . N (2)

Where ~1 is the d× d unit matrix. In the other direction we have:

R˜ =
N∑
α=1

~C˜T

α
· ~xα . (3)
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We compute the center of mass of the system as follows:

~xcm =
1

Mtotal

N∑
α=1

mα~xα

=
1

Mtotal

N∑
α=1

mα
~C˜α ·R˜

=

(
1

Mtotal

N∑
α=1

mα
~C˜α
)
·R˜

≡ ~M˜ ·R˜

(4)

where Mtotal =
∑N

α=1mα is the total mass of the system and ~M˜ is a d × dN dimensional,
block-diagonal matrix composed of N ordered, d× d blocks with mα (α = 1 . . . N ) along the
diagonals.

~M˜1,α
=

mα

Mtotal

~1 , α = 1 . . . N (5)

2 Should the Center of Mass be Conserved?
While our intuition is that center of mass translation should increase the length of a path be-
tween two regions of configuration space which have the same center of mass, proofs are
superior to intuition1. This proof follows that proposed by RMS.

The kinematic length is defined as per [1]:

` =

∫
dτ
√

2T (τ) (6)

where T (τ) is the kinetic energy as a function of progress along the path, defined in the usual
way, as:

2T (τ) =
N∑
α

mα

(
d~xα
dτ

)2

. (7)

Discretizing the integral in eq. 6 gives the contribution from a single small step,

∆` =

√√√√ N∑
α

mα∆~x 2
α (8)

where ∆~xα is the displacement of the αth center in a time ∆τ . Suppose ∆~xα is decomposed
into 2 components:

∆~xα = ∆~x 0
α + ∆~x (9)

where ∆~x corresponds to net center of mass translation and the
{

∆~x 0
α

}
preserve the center of

mass. That is:

~0 =

N∑
α

mα∆~x 0
α . (10)

1Govind Menon, personal communication. He was actually a lot more disparaging about intuition in the absence
of proof.
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Inserting eq. 9 into eq. 8 yields:

∆` =

√√√√ N∑
α

mα (∆~x 0
α + ∆~x)2

=

√√√√ N∑
α

mα∆~x 02
α + ∆~x 2

N∑
α

mα +

(
N∑
α

mα∆~x 0
α

)
· ~x

=

√√√√ N∑
α

mα∆~x 02
α +M∆~x 2

(11)

where the last term of the middle line is 0 by eq. 10. Identifying,

∆`0 =

√√√√ N∑
α

mα∆~x 02
α , (12)

as the length in the absence of center of mass translation, we have:

∆` =
√

∆`20 +M∆~x 2 > ∆`0 . (13)

Thus completing the proof that net center of mass translation increases the kinematic length.

3 Is the Center of Mass Conserved?
Having established that to be “shortest”, paths through configuration space must preserve the
center of mass in real space, I turn my attention to the algorithm presented in [1] to compute
geodesics in the potential energy landscape ensemble. There are two components of the algo-
rithm, which treat “free” and “escape” steps respectively. The following sections analyze each
in turn.

3.1 Free Steps
Equation (3.1) of [1] gives the following expression for computing free (straight-line) steps
between the current position, R˜ t, and the target, R˜f :

R˜ t+1 = R˜ t + δR
R˜f −R˜ t∣∣R˜f −R˜ t∣∣ . (14)

Collapsing the scalars into the constant γ yields:

R˜ t+1 = R˜ t + γ
(
R˜f −R˜ t

)
. (15)

We can impose the requirement that our boundaries have the same center of mass (recall eq.
4) by demanding:

~M˜ ·R˜0 = ~M˜ ·R˜f . (16)
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We then ask if R˜1, computed by eq. 15 will have the same center of mass as R˜0.

~M˜ ·R˜0 ?
= ~M˜ ·R˜1

~M˜ ·R˜0 = ~M˜ ·
[
R˜0 + γ

(
R˜f −R˜0

)] (17)

Canceling the common term and scalar leaves:

~0 = ~M˜ ·
(
R˜f −R˜0

)
, (18)

which is a restatement of the limits on our boundary conditions, eq. 16. We prove, therefore,
that the first step does not perturb the center of mass. By induction, we conclude:

~M˜ ·R˜0 = ~M˜ ·R˜ t = ~M˜ ·R˜f (19)

for all t. And so the center of mass is not perturbed by the free steps of the algorithm.

3.2 Escape Steps
Turning to the next page of [1] reveals equation (3.3), applied when the system enters a re-
gion where the potential is greater than the landscape energy, V (R˜) < EL. To escape from
the forbidden region, a Newton-Raphson root search is conducted by iterating the following
expression until the landscape energy criterion is satisfied:

R˜n+1 = R˜n − V (R˜n)− EL∣∣∣∣∇˜V ∣∣R˜n

∣∣∣∣2
· ∇˜V ∣∣R˜n . (20)

In the paper, terms appear with t superscripted and n subscripted, but this is unduly cumber-
some for the present application. As in the case of the free steps, we collapse all the scalars
into a constant term, ζ, leaving:

R˜n+1 = R˜n − ζ ∇˜V ∣∣R˜n . (21)

Again our question is, Does the iterated map preserve the center of mass? We encode this
as (again recall eq. 4):

~M˜ ·R˜n ?
= ~M˜ ·R˜n+1

~M˜ ·R˜n ?
= ~M˜ ·

(
R˜n − ζ ∇˜V

∣∣∣
R˜n

)
.

(22)

Canceling the common term and the scalar leaves us with the following expression:

~0
?
= ~M˜ · ∇˜V ∣∣R˜n , (23)

which doesn’t look too good.
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Does it Hold? Proving that eq. 23 holds in general would be quite difficult2, but invalidating
it requires only one counter-example. All the problems treated by the group’s analysis of
geodesics to date (Tuesday 28th October, 2014), involve translationally invariant potentials, so
let us confine our attention to a particularly simple one: the pair-potential for two mutually
interacting centers in 3 dimensions. The form of our potential is then:

V = u(~x1 − ~x2) . (24)

Taking ~x = ~x1 − ~x2 We compute the derivative in eq. 23, arriving at:

∇˜V =

+∂u
∂~x

−∂u
∂~x

 . (25)

Inserting eq. 25 into eq. 23 gives

~M˜ · ∇˜V
∣∣∣
R˜n

= m1
∂u

∂~x
−m2

∂u

∂~x

=
∂u

∂~x
(m1 −m2)

?
= ~0 ,

(26)

Showing that eq. 23 fails for m1 6= m2. Therefore Stratt and Wang’s equation (3.3) does not
preserve the center of mass with heterogeneous masses, which erroneously lengthens the path.
On the flip-side, eq. 23 does hold when the masses are the same. It can be shown that eq. 23
holds for a sum of such pair potentials with equal masses and therefore the group’s previous
results are safe from this issue.

4 Enforcing Center of Mass Conservation Analytically
Having arrived at the unhappy conclusion that the present method for finding geodesics is
inapplicable to systems with heterogeneous masses, I’d like to fix it. In this section, I derive a
transformation to displacements in configuration space, which leaves them unmodified except
for removing any center of mass translation they would have introduced. In the section that
follows, I verify that this general result allows us to construct a suitable replacement for the
equation of the escape steps.

Suppose we have a general displacement in configuration space, ∆R˜ , and would like to
ensure that it does not include center of mass motion. We therefore seek P˜ such that:

~0 = ~M˜ · (∆R˜ + P˜) . (27)

This leads to the under-determined relation:

~M˜ · P˜ = − ~M˜ ·∆R˜ . (28)

There are many solutions to this equation (including P˜ = −∆R˜ , which wouldn’t help us
much!), but we can choose the following convenient approach to constructing a useful solution:

2spoiler: it does not.
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Let P˜ be the configuration space vector which displaces each center by the same quantity such
that eq. 28 is satisfied. This quantity, of course, will be the negative of the net center of mass
displacement introduced by ∆R˜ and is given by:

~∆xcm = − ~M˜ ·∆R˜ . (29)

We can build P˜ from ~∆xcm using eq. 3 as follows:

P˜ =

(
N∑
α=1

~C˜T

α

)
· ~∆xcm . (30)

Defining the summed matrices as ~C˜T
,

~C˜T

α,1
= ~1 , α = 1 . . . N (31)

we can write
P˜ = −~C˜T · ~M˜ ·∆R˜ . (32)

Further, defining
M = ~C˜T · ~M˜ , (33)

we can write
P˜ = −M ·∆R˜ . (34)

So the configuration space representation of ∆R˜ , which includes no center of mass translation
is:

∆R˜? = ∆R˜ + P˜ = (1−M) ·∆R˜ (35)

The dN × dN matrixM has a band structure defined by:

Mα,β =
mβ

Mtotal

~1 , α, β = 1 . . . N (36)

For instance, in three spatial dimensions, d = 3, we have:

M =
1

M



m1 m2 mN

m1 m2 . . . mN

m1 m2 mN

m1 m2

m1 m2
...

m1 m2

...
...


(37)

Armed with this result, we can re-write Wang and Stratt’s (3.3) (cf. eqs. 20 and 21) as

R˜n+1 = R˜n − ζ (1−M) · ∇˜V ∣∣R˜n (38)

where

ζ =
V (R˜n)− EL∣∣∣∣∇˜V ∣∣R˜n

∣∣∣∣2
(39)

as before.
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4.1 Verification
As in section 3.2, we would like to verify that our expression (eq. 38) conserves the center of
mass. I proceed as before, using our new result.

~M˜ ·R˜n ?
= ~M˜ ·R˜n+1

~M˜ ·R˜n ?
= ~M˜ ·

(
R˜n − ζ (1−M) · ∇˜V

∣∣∣
R˜n

)
(40)

After, rearranging and canceling the common term as well as the scalar, we have:

~M˜ · ∇˜V ∣∣R˜n

?
= ~M˜ ·M · ∇˜V ∣∣R˜n (41)

Inserting the definition forM (eq. 33) gives:(
~M˜
)
· ∇˜V ∣∣R˜n

?
=
(
~M˜ · ~C˜T · ~M˜

)
· ∇˜V ∣∣R˜n (42)

which can only hold if
~M˜ = ~M˜ · ~C˜T · ~M˜ . (43)

We can see that this does indeed hold by inserting the component definitions of ~C˜T
(eq. 31)

and ~M˜ (eq. 5): [
~M˜ · ~C˜T

]
· ~M˜ =

[
N∑
α

~M˜1,α

~C˜T

α,1

]
· ~M˜

=

[
N∑
α

mα

Mtotal

~1 ·~1

]
· ~M˜

=

[
~1

(
1

Mtotal

)( N∑
α

mα

)]
· ~M˜

=
[
~1
]
· ~M˜

~M˜ · ~C˜T · ~M˜ = ~M˜

(44)

What of the Newton-Raphson Root Search? From the above, eq. 38 clearly preserves
the center of mass. However, the point of (3.3) in [1] was originally a root search to ensure
V (R˜) = EL. Has this property been retained? Yes it has! We know this because the construc-
tion of M began with P˜ in eq. 30. In which we specified displacing all centers by the same
amount, ~∆xcm. This amounts to a net translation, under which our potential is invariant3.

3If our problem contained a field and the potential was not translationally invariant or if our boundaries did not
have the same center of mass, all of this would go out the window. In particular, we would not be able to rationalize
there being something “wrong” with center of mass translation in the geodesic as we did in section 2.
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5 Discussion
The results from section 4 allow us to modify Wang and Stratt’s methods such that geodesics
are guaranteed not to displace the center of mass while traversing configuration space. This
is of particular importance to my work on formaldehyde, where the ratio of center of mass
kinematic length to total length for roaming geodesics implementing the flawed method was
of order 10%. While the correction is pleasing, the initial observation raises other, disquieting
questions. It is likely that an analysis similar to that of section 2, would reveal that in addition
to translation, rigid rotation spuriously increases the kinematic length. Given that our system
is decidedly non-rigid, however, quantifying or even defining “net” rotation is a substantively
more difficult problem, which I now leave without address.

References
[1] Wang, C.; Stratt, R. M. The Journal of Chemical Physics 2007, 127, 224504.

8


	Notation
	Should the Center of Mass be Conserved?
	Is the Center of Mass Conserved?
	Free Steps
	Escape Steps

	Enforcing Center of Mass Conservation Analytically
	Verification

	Discussion

