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1 Why geodesics for photodissociation?

One of the techniques our group uses to understand chemical systems is identifying the geodesics (or shortest
paths) through an energy landscape with the inherent dynamics of the system. Inherent dynamics describe
the dominant thoroughfares of configuration space—the major motions during a chemical or physical trans-
formation. How might we find these dynamics, so definitionally different from molecular dynamics? First,
we need some way to partition configuration space into allowed and disallowed regions and then we need a
strategy to traverse them and identify these major routes.

To partition the space, We take the perspective of the potential energy landscape ensemble [Wang and Stratt(2007b)],
which admits all configurations, R˜ , such that the potential, V , is less than some landscape energy, EL.

V (R˜) ≤ EL

How do we compute dynamics in this system? Classical mechanics can be formulate in terms of the principle
of least action, minimize:

S =

∫ t

0
dτ (T − V )

where T is the kinetic energy. From the landscape ensemble picture, we minimize a similar integral subject
to the landscape energy constraint:

I =

∫ t

0
dτ (T ) s.t. V (R˜(τ)) ≤ EL (1)

Minimization of objects such as these is the work of the calculus of variations, to which we now turn.

2 The calculus of variations

This section follows [Goldstein(1980)] with modifications suggested by R.M.S.

Using calculus to find the extrema of a function (e.g.: h(x)) is a familiar operation. By equating the deriva-
tive of h(x) with 0, we locate values of x for which h(x) is unchanging or stationary. The problem treated
by the calculus of variations is analogous. We seek to extremize an object that takes a function or a path as
its argument. That is, we find some path such that the object is stationary with respect to variations in that
function.
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Symbol Description
T, V respectively, the kinetic and potential energy
τ arbitrary progress, time-like variable
~R real-space, lab-frame vector
R˜ configuration-space vector, lab-frame
~r real-space vector, internal coordinates
~Rc.m. system center-of-mass, lab-frame
~̇R τ -derivative of a vector
N number of total atoms in the system
j, k subscripts running over atoms: 1 . . . N

µ, ν, α, γ subscripts running over real-space coordinates: x, y, z
α alternately, a small parameter(
ξ˜
)
jα

component of ξ˜ corresponding to the αth coordinate of the jth atom

δµ,ν Kronecker delta; 1 for µ = ν, 0 otherwise
1 unit matrix; dimensionality from context
û unit vector; dimensionality from context

Table 1: List of symbols and notation conventions

From eq. 1, we seek to minimize an integral over kinetic energy, which in general is a function of coordinates
and their derivatives. Working in one dimension1, we seek to find the path R(τ) that extremizes:

J =

∫ t

0
dτf

(
R, Ṙ

)
(2)

That is, we seek R(τ) such that J is unchanged for infinitesimal variations in R. We can represent the
paths neighboring the correct path, R(τ) by adding arbitrary function, η(τ) in proportion to a small variable
parameter, α:

R(τ, α) = R(τ) + αη(τ) (3)

As we are interested in R such that it connects R(0) to R(t), we require that:

η(0) = η(t) = 0 (4)

J in eq. 2 is now a function of α as well:

J(α) =

∫ t

0
dτf

(
R(τ, α), Ṙ(τ, α)

)
(5)

From the above, we see that the requirement for stationary J takes the following familiar form:

0 =
dJ

dα

∣∣∣∣
α=0

(6)

We can bring the α derivative inside the integral in eq. 5 and applying the chain rule, we have:

dJ

dα
=

∫ t

0
dτ

(
∂f

∂R

∂R

∂α
+
∂f

∂Ṙ

∂Ṙ

∂α

)
1This procedure extends to systems with an arbitrary number of degrees of freedom
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From eq. 3, we have that ∂R∂α = η, the arbitrary function of τ . Which leaves:

dJ

dα
=

∫ t

0
dτ

(
∂f

∂R
η +

∂f

∂Ṙ

∂Ṙ

∂α

)
(7)

Consider the second term in the integral:∫ t

0
dτ
∂f

∂Ṙ

∂Ṙ

∂α
=

∫ t

0
dτ
∂f

∂Ṙ

∂2R

∂α∂τ

This expression is susceptible by integration by parts, which takes the following general form:∫ b

a
udv = uv|ba −

∫ b

a
vdu

Identify:

u =
∂f

∂Ṙ

dv =
∂2R

∂α∂τ
dτ

du =
d

dτ

(
∂f

∂Ṙ

)
v =

∂R

∂α
= η

Re-arranging leaves us with: ∫ t

0
dτ
∂f

∂Ṙ

∂Ṙ

∂α
=

∂f

∂Ṙ
η

∣∣∣∣t
0

−
∫ t

0
dτ

d

dτ

(
∂f

∂Ṙ

)
η

Because of the bounds on η (recall eq. 4) the surface terms vanish. Inserting the above into eq. 7 gives:

dJ

dα

∣∣∣∣
α=0

=

∫ t

0
dτ

[
∂f

∂R
− d

dτ

(
∂f

∂Ṙ

)]
η = 0 (8)

where evaluating the derivative at α = 0 gives R and Ṙ as functions of τ alone. Since η is an arbitrary
function, the integral is stationary only if

∂f

∂R
− d

dτ

∂f

∂Ṙ
= 0 (9)

which gives the conditions onR to minimize J . Notice that inserting the Lagrangian for f yields Lagrange’s
equations of motion.

2.1 Minimizing eq. 1

For an N particle system, with labels j = 1 . . . N , in a Cartesian coordinate system with µ = x, y, z, the
kinetic energy can be written as:

T =
∑
j,µ

1

2
mjṘ

2
jµ (10)

where ~̇Rj =
d~Rj

dτ . Inserting T into eq. 1 gives:

I =

∫ t

0
dτ

∑
j,µ

1

2
mjṘ

2
jµ

 (11)
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Identifying the sum as f in eq. 9, we proceed and can extremize the function in terms of each of its inde-
pendent (there are no cross-terms) variables, {Ṙjµ}, finding:

R̈jµ = 0 (12)

which, when integrated, yields the equation for a straight line (and the geodesic):

Rjµ(τ) = Rjµ(0)
(

1− τ

t

)
+Rjµ(t)

(τ
t

)
(13)

this amounts to linearly interpolating between Rjµ(0) and Rjµ(t) in time t for each of the coordinates,
{Rjµ}.

3 Geodesics

In the previous section we found that minimizing the integral in eq. 1 gave the equation for a straight line—
the shortest path in a Cartesian space. We can also motivate the notion of shortest path as follows. Begin
from eq. 1:

I =

∫ t

0
dτ (T )

Working in a system with homogeneous masses, m, inserting the kinetic energy yields:

I =

∫ t

0
dτ

(
1

2
mṘ˜2

)
(14)

Note that the extremization of any quantity of the form:

I =

∫
f(x)dx (15)

can also be effected by extremizing

I ′ =

∫
H(f(x))dx (16)

where H(x) is a function with a strictly positive derivative and whose domain includes the range of f(x).
Suppose we take for such a function, H(x) =

√
2x, eq. 14 becomes:

I ′ =

∫ t

0
dτ
(
mṘ˜2

)1/2
(17)

= m1/2

∫ t

0
dτ

(
dR˜
dτ

2
)1/2

(18)

= m1/2

∫ t

0
dτ2

(
dR˜
dτ

2
)1/2

(19)

= m1/2

∫ t

0

∣∣dR˜∣∣ (20)

= m1/2

∫ t

0
ds = ` (21)

where ds is an element of path length and ` is a mass-weighted length, found by integrating over the path-
length element. In this case, it is clear that we quite literally minimize the path length, which, by definition,
yields a geodesic.
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3.1 Why impose a constraint?

While our intuition may be that center of mass translation should increase the length of a path between two
points in configuration space which have the same center of mass, we can show explicitly that this is indeed
the case.

The kinematic length defined as per [Wang and Stratt(2007a)] (or found via another route) is:

` =

∫
dτ
√

2T (τ) (22)

where T (τ) is the kinetic energy as a function of progress along the path for an N particle system is defined
as above:

T =
N∑
j=1

1

2
mj

~̇Rj
2

(23)

We can introduce a coordinate transformation to separate center of mass motion from internal coordinates
as follows:

~Rc.m. ≡
∑N

j=1mj
~Rj∑N

j=1mj

≡ 1

M

N∑
j=1

mj~rj (24)

where mj is the mas of the jth particle. The internal coordinates are then:

~rj ≡ ~Rj − ~Rc.m. (25)

Note that our system of 3N degrees of freedom is now specified with 3N + 3 coordinates.

We can now write the kinetic energy as:

T =
1

2

N∑
j=1

mj

(
~̇rj + ~̇Rc.m.

)2
(26)

=
1

2

N∑
j=1

mj~̇rj
2

+
1

2
M ~̇Rc.m.

2

(27)

The cross-terms vanish (as expected) because:

N∑
j=1

mj~̇rj · ~̇Rc.m. =

 N∑
j=1

mj~̇rj

 · ~̇Rc.m. (28)

=

 N∑
j=1

mj

(
~̇Rj − ~̇Rc.m.

) · ~̇Rc.m. (29)

=

 N∑
j=1

mj
~̇Rj −

N∑
j=1

mj
~̇Rc.m.

 · ~̇Rc.m. (30)

=
[
M ~̇Rc.m. −M ~̇Rc.m.

]
· ~̇Rc.m. (31)

= ~0 · ~̇Rc.m. = 0 (32)
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Inserting eq. 27 into our length expression, eq. 22,gives:

` =

∫
dτ

 N∑
j=1

mj~̇rj
2

+M ~̇Rc.m.
2

1/2

(33)

bringing dτ inside the root allows us to cancel the time derivatives and leaves us with a function of length
elements, or displacements:

` =

∫  N∑
j=1

mj(d~rj)
2 +M

(
d~Rc.m.

)21/2

(34)

Both terms are guaranteed positive and so any path for which
(
d~Rc.m.

)
is finite will be longer than if it were

0.

We also could have arrived at the same conclusion by noting the form of eq. 13. Our solution interpolates
between specified boundary-points. If some of the boundary values are identical, e.g.: ~Rc.m.(0) = ~Rc.m.(t),
then eq. 13 gives ~Rc.m.(τ) = ~Rc.m.(0) for all τ . This is indeed the case for translationally invariant potentials
and as such our geodesics should preserve the center of mass. By the form of eq. 13, we know that straight-
line paths will not perturb the center of mass. To actually compute such paths we discretize eq. 13 as
follows:

R˜ (t+1) = R˜ (t) + δR
R˜f −R˜ (t)∣∣R˜f −R˜ (t)

∣∣ (35)

Where δR is a small (relative to features of the landscape) step-size and the walk is carried out in the
lab-frame, {~Rj}

4 Geodesics around objects

So far we have dealt only with the first part of eq. 1, which read:

I =

∫ t

0
dτ (T ) s.t. V (R˜(τ)) ≤ EL (36)

namely the minimization of the action integral. The second part requires us to satisfy a non-holonomic
constraint. The form of the solution is suggested by the Kuhn-Tucker theorem[Kuhn and Tucker(1951)],
which indicates that our desired solution will be the union of paths in the absence of a constraint and those
where strict equality holds. When the straight-line motion in eq. 35 sends the system into a region violating
the landscape criterion, V (r˜) > EL, we need a way to proceed.

4.1 Vanilla Newton-Raphson

The Kuhn-Tucker theorem suggests that we must closely trace the boundaries of the obstacles specified by
V (R˜(τ)) ≤ EL. We aim, therefore to take the most efficient path out of the obstacle. When the procedure
described in eq. 35 moves the system such that V (R˜(τ)) > EL, we need a way back to the boundary.
That is, we seek the nearest solution to V (R˜(τ)) = EL. A classic strategy for solving this problem is a
Newton-Raphson root search.
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Here, we expand the function of interest to first order and run downhill:

V (R˜) ≈ V (R˜0) + ∇˜V ∣∣R˜0
· (R˜ −R˜0) = EL (37)

Where R˜0 was the first offending step in eq. 35. We make the guess that heading downhill via the steepest
path will be optimal; this suggests a solution of the form:

(R˜ −R˜0) = C ∇˜V ∣∣R˜0
≡ ∆R˜ (38)

Which immediately yields the solution:

C =
EL − V (R˜0)∣∣∣∣∇˜V ∣∣R˜0

∣∣∣∣2
This procedure is iterated until the boundary is found.

4.1.1 What of the center-of-mass?

While it may look like eq. 38 renders our problem solved, we still need to contend with possible displace-
ments to the center of mass. Using eq. 24 we can compute the change in the position of the center of
mass:

∆~Rc.m. =
C

M

N∑
j=1

mj

(
−−→
∇V

∣∣∣
R˜0

)
j

(39)

Where
(
−−→
∇V

∣∣∣
R˜0

)
j

is the component of the ∇˜V ∣∣R˜0
corresponding to the jth center and is the negative of

the force acting on that body.

Proving that eq. 39 is 0 in general would be quite difficult (particularly given that it is not), but invali-
dating it requires only one counter-example. All the problems treated by the group’s analysis of geodesics
to date (March 2016), involve translationally invariant potentials, so let us confine our attention to a par-
ticularly simple one: the pair-potential for two mutually interacting centers. The form of our potential is
then:

V = u(|~r1 − ~r2|) (40)

Taking ~r12 = ~r1 − ~r2 We compute the gradient in eq. 39, arriving at:

∇˜V =

 ∂u
∂~r12

∂u
∂~r21

 (41)

Using ~r12 = −~r21 and inserting eq. 41 into eq. 39 gives

∆~Rc.m. =
C

M

∂u

∂~r12
(m1 −m2) (42)

We see that eq. 39 is finite for for m1 6= m2. Therefore our naı̈ve root search does not preserve the center
of mass with heterogeneous masses (and therefore would erroneously lengthen the path). On the flip-side,
eq. 39 is 0 when the masses are the same. It can be shown that this is alto so for a sums of such pair potentials
with equal masses and therefore the group’s previous results are safe from this issue.
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4.2 Newton-Raphson with a constraint

Suppose we modify eq. 37 to respect a constraint. After all eq. 38 was based on a guess about following the
gradient. If, instead, we chose to follow a path constrained to be parallel to some direction, n̂, eq. 38 would
have the following form:

(R˜ −R˜0) = Cn̂ (43)

and inserting into eq. 37 would yield:

V (R˜) ≈ V (R˜0) + C ∇˜V ∣∣R˜0
· n̂ = EL (44)

Solving for C yields:

C =
EL − V (R˜0)

∇˜V ∣∣R˜0
· n̂

While this is well an good, it doesn’t quite solve our problem. We need to be able to impose a constraint
that is orthogonal to some directions, those of center of mass motion. What if we follow the path of steepest
descent subject to the constraint that it is orthogonal to some configuration-space vector which would moved
the center of mass, ξ̂?

To construct such a step we take a brief detour to discuss dyads. The following treatment uses the
notation of real-space vectors, but is applicable to vectors of arbitrary dimension (such as our configuration
space vectors). This treatment is reprised and expanded in [Simmonds(1982)], which was recommended to
me by R.M.S. and which I found quite useful.

A dyad (or dyadic) is a 2nd order tensor formed from the direct product of 2 vectors. The dyadic ~u~v is
defined such that the action of this tensor on a vector ~w is:

~u~v(~w) = ~u(~v · ~w) (45)

The Cartesian components are (~u~v)α,γ = uαvγ or

~u~v =

u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3


Given a unit vector, û, the definition in eq. 45, makes it easy to construct an operator which projects another
vector onto û. For example:

ûû(~w) = û(û · ~w) = Projû ~w (46)

gives the projection of ~w on û. See Figure 1 for a geometric interpretation.

A useful property of projection operators is their idempotence. From the geometric significance, it must
follow that repeat application of any projection, is equivalent to single application. We show that this holds
for ûû as follows:

(ûû)2 = ûû ûû (47)

= û(û · û)û (48)

= û(1)û (49)

= ûû (50)
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Figure 1: Geometric realization of the projection of ~w onto û. Modified from [Simmonds(1982)].

By induction, we can reason that (ûû)n = ûû for all n ≥ 1.

In addition to projection on û, we can construct the projection off of (or orthogonal to) û. Such a projection
is given by:

(1− ûû) (51)

The orthogonality of the two projections is easily shown:

(1− ûû)ûû (52)

=ûû− (ûû)2 (53)

=ûû− ûû (54)

=0 (55)

Armed with such a projection operator, the analogy to eq. 43 for an orthogonal direction is clear. We
now take a downhill step and project out all motion along ξ̂:

(R˜ −R˜0) = C
(
1˜ − ξ̂ξ̂

)
· ∇˜V ∣∣R˜0

(56)

This, we again insert into eq. 37, yielding:

V (R˜) ≈ V (R˜0) + C ∇˜V ∣∣R˜0
·
(
1˜ − ξ̂ξ̂

)
· ∇˜V ∣∣R˜0

= EL (57)

Solving for C yields:

C =
EL − V (R˜0)

∇˜V ∣∣R˜0
·
(
1˜ − ξ̂ξ̂

)
· ∇˜V ∣∣R˜0

To enforce a stationary center of mass, we recall our internal coordinates, eq. 25, which have the fol-
lowing constraints:

N∑
j=1

mj
~Rj = 0 (58)

one for each spatial dimension. We encode these constraints as vector operations in configuration space as:(
ξ˜µ
)
jν
≡ δµ,νmj (59)

=⇒ ξ˜µ ·R˜ = 0 ∀ µ ∈ {x, y, z} (60)
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What does ξ˜µ look like? By way of example:

ξ˜x =



m1

0
0
m2

0
0
...

mN

0
0


The magnitude of ξ˜µ is the root of the sum of the squares of the masses:

∣∣∣ξ˜µ
∣∣∣ =

√√√√ N∑
j=1

m2
j (61)

and so the unit vector pointing along ξ˜µ is:

(
ξ̂µ

)
jν

=
δµ,νmj√∑N

j=1m
2
j

(62)

Constructing the corresponding dyad, we have:(
ξ̂µξ̂µ

)
jγ,kα

=
mjmk∑N
j=1m

2
j

δµ,γδµ,α (63)

and the projection operator which eliminates center of mass motion along the µ direction is then:(
1˜ − ξ̂µξ̂µ

)
jγ,kα

= δγ,αδj,k − δµ,γδµ,α
mjmk∑N
j=1m

2
j

(64)

= δγ,α

(
δj,k − δµ,γδµ,α

mjmk∑N
j=1m

2
j

)
(65)

Where we have made use of: (
1˜)jγ,kα = δγ,αδj,k

and note that in eq. 64
δγ,αδµ,γδµ,α = δµ,γδµ,α

as the term is finite only for α = γ = µ with µ in the range of α and γ.

To eliminate center of mass motion along each Cartesian direction, we form the product of all of them:(
1˜ −P˜) ≡∏µ

(
1˜ − ξ̂µξ̂µ

)
(66)

10



This product reduces to a sum using the following observation:(
ξ̂µξ̂µ

)(
ξ̂ν ξ̂ν

)
=
(
ξ̂µξ̂µ

)
δµ,ν

which is true because ξ̂µ and ξ̂ν are orthogonal. This leaves:

(
1˜ −P˜) =

(
1˜ −∑µ ξ̂µξ̂µ

)
(67)

Inserting eq. 63 and using the same identities we did for eq. 64, we arrive at:

(
1˜ −P˜)jγ,kα = δγ,α

(
δj,k −

mjmk∑N
j=1m

2
j

)
(68)

With M2 ≡
∑N

j=1m
2
j the projection defined by eq. 68 has the following symmetric structure in 3 spatial

dimensions:

(
1˜ −P˜) =



1− m2
1

M2
−m1m2

M2

1− m2
1

M2
−m1m2

M2
· · ·

1− m2
1

M2
−m1m2

M2

−m1m2
M2

1− m2
1

M2

−m1m2
M2

1− m2
1

M2

−m1m2
M2

1− m2
1

M2
...

. . .


(69)

Returning to the Newton-Raphson problem, we proceed in analogy to eq. 56 and posit that the appro-
priate solution is to follow the gradient while projecting out center of mass motion:

(R˜ −R˜0) = C
(
1˜ −P˜) · ∇˜V ∣∣R˜0

(70)

This, we again insert into eq. 37, yielding:

V (R˜) ≈ V (R˜0) + C ∇˜V ∣∣R˜0
·
(
1˜ −P˜) · ∇˜V ∣∣R˜0

= EL (71)

Solving for C yields:

C =
EL − V (R˜0)

∇˜V ∣∣R˜0
·
(
1˜ −P˜) · ∇˜V ∣∣R˜0

Which we insert back into eq. 70 to find:

(R˜ −R˜0) = −
V
(
R˜0

)
− EL∣∣∣∣∇˜ ′V
∣∣
R˜0

∣∣∣∣2
∇˜ ′V

∣∣
R˜0

(72)

where we have defined∇˜ ′ ≡
(
1˜ −P˜) ·∇˜ as the center-of-mass invariant gradient operator and made use of

the idempotent property of projections.
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Applying eq. 72 iteratively leads to the relation (compare to [Wang and Stratt(2007a)]):

R˜n+1 = R˜n − V
(
R˜n)− EL∣∣∣∣∇˜ ′V
∣∣
R˜n

∣∣∣∣2
∇˜ ′V

∣∣
R˜n

(73)

where R˜0 is the first R˜ (t) with V
(
R˜ (t)

)
> EL from eq. 35. This procedure will escape the forbidden region

while preserving the center of mass.
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